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Abstract

Covert communications is a field that investigates if and how information can be transmitted
over a channel with a low probability of being detected or intercepted. A covert commu-
nications scheme is usually designed by randomizing properties of the signal, so the signal
“blends in” with background noise better. Several metrics for quantifying the covertness of
a communications scheme exist, but are specific to detector or modulation type. This work
compares the relative covertness of a wide variety of communications schemes against the
main classes of signal detectors over an additive white Gaussian noise (AWGN) channel.
Radiometric and cyclostationarity detectors are found to be effective for reliably detect-
ing weak signals of all modulations, although the radiometer had an entirely predictable
performance, regardless of modulation scheme, while the performance of the cyclostation-
arity detectors varied with modulation scheme. The communications schemes tested range
from traditional modulations to spread spectrum techniques and chaotic modulations. The
tradeoff between detectability and error rate is also considered in this work, and code di-
vision multiplex access (CDMA) was found to have the best overall balance between error
rate and covertness.
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Résumé

Les communications secrètes représentent un domaine qui étudie si et comment l’information
peut être transmise sur un canal avec une faible probabilité d’être détectée ou interceptée.
Une technique de communications secrètes est généralement conçue en randomisant cer-
taines propriétés du signal afin que celui-ci se ”fonde” mieux dans le bruit de fond. Plusieurs
métriques existent pour quantifier le caractère secret d’une technique de communications,
mais elles sont spécifiques au type de détecteur ou de modulation utilisé. Ce travail com-
pare le degré relatif de secret d’une large gamme de techniques de communications face
aux principales classes de détecteurs de signal sur un canal AWGN. Il est démontré que les
détecteurs radiométriques et de cyclostationnarité sont efficaces pour détecter de manière
fiable des signaux faibles, quelle que soit la modulation utilisée. Toutefois, la performance
du radiomètre est entièrement prévisible, indépendamment du type de modulation, tandis
que celle des détecteurs de cyclostationnarité varie en fonction du type de modulation. Les
techniques de communications testées couvrent un large éventail, allant des modulations
traditionnelles aux techniques d’étalement de spectre et aux modulations chaotiques. Ce
travail examine également le compromis entre détectabilité et taux d’erreur, et le CDMA
s’est avéré avoir le meilleur équilibre global entre taux d’erreur et secret.
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1 Introduction

In wireless transmission environments, it can be desirable to send messages reliably (i.e.,
that can be received by intended recipients without error), but deniably, (i.e., illegitimate
users are unable to obtain evidence of message transmission). A communications scheme is
undetectable, or covert, when it can transmit messages that have these properties.

This idea of undetectable communications has historical precedent. In 5th century An-
cient Greece before common era (BCE), Herodotus notes that Histiaeus tattooed a missive
onto the shaved scalp of a messenger [1, §5.35.3]. The messenger grew back his hair, only
to shave it again upon arrival at his destination to reveal the hidden message. During the
5th century BCE in Ancient Greece, Aeneas Tacticus mentions many methods of hiding the
existence of a message that remain largely unchanged to this day [2, Ch. 31]. These in-
clude the first known mention of invisible ink, and a plethora of ideas for smuggling written
messages on hard to search areas of the body, or things like writing tablets. Tacticus also
mentions steganographic techniques, like writing an ordinary letter about some topic that is
sufficiently long, then embedding the hidden text by marking the letters of the hidden text
with small marks, so the recipient deciphers the hidden text by only considering the marked
letters. This demonstrates humanity has been thinking about this issue for millennia.

The desire to send messages without anyone else knowing the communication took place
has not faded from the human psyche. While there have been many advances in undetectable
messaging since then [3], the practice of modern steganography [4] concerns itself primarily
with embedding hidden messages in digital files and computer systems. This thesis restricts
its investigation to undetectable messages within the realm of wireless communications
systems.

1.1 Covert Communications
Covert communications describe a situation that differs fundamentally from the traditional
physical-layer security situation, largely in terms of the objective of the malicious user.
In both scenarios, the legitimate user Alice wants to communicate with the legitimate
user Bob. In the standard physical-layer security setup [5], the malicious user (usually an
eavesdropper Eve or a decrypter Carol) seeks to discover what it is that Alice transmitted.
Under the covert scenario, however, a warden Willie1 seeks instead to find out whether Alice
transmitted (or not). The warden Willie in this scenario has no regard for the contents of
the message that Alice is sending, but only tries to establish evidence of transmission.

Theoretical fundamental limits have been established regarding the maximum informa-
tion rate that can be achieved via covert communications, but little work has been done
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1.2. LPD & LPI

to characterize and quantify the “detectability” or “covertness” of existing communications
schemes by different types of detectors.

This thesis asks two questions about covert communications:
Q.1 Which communications protocols and modulation techniques can Alice employ to best

evade detection by Willie?
Q.2 What detection method(s) can Willie employ to best detect signals transmitted by

Alice?
These questions are intrinsically interrelated—they are two opposing perspectives of the
same fundamental problem.

1.2 LPD & LPI
The terms low probability of detection (LPD) and low probability of interception (LPI)
are both used to describe waveforms that attempt to be undetectable to illegitimate users.
While low probability of interception (LPI) usually refers to properties of the waveforms,
the phrase low probability of detection (LPD) communications describes the same overall
situation as the term covert communications, which includes Alice’s waveform and Willie’s
detector, i.e., both the transmitter and the detector of the illegitimate observer.

The terms LPD and LPI are often used interchangeably in the literature, and are treated
interchangeably throughout this thesis. The primary difference between the two terms is
that LPD refers to the signals that obey a specific mathematical formalism [6] with Alice,
Bob, and Willie, whereas the term LPI is often used in the literature by waveform designers
to mean “this signal is practically hard to intercept or detect”, without formally quantifying
exactly how or what it means for a waveform to be “difficult” to detect.

1.3 Contributions
This work measures the relative detectability of a wide variety of communications schemes
against a variety of “blind-parameter” signal detectors, i.e., detectors that have no knowl-
edge of the composition of the signal they are trying to detect. The deniability of a message,
as measured by its probability of detection, is calculated as a function of signal-to-noise ra-
tio (SNR) for each combination of detector and transmission scheme. The deniability of
each transmission scheme is compared alongside its reliability, measured in terms of bit
error rate (BER), to give an overall picture of covert performance. Properties that make
communications schemes more covert are discussed. The question of which detectors are
the most powerful at positively identifying transmissions is also addressed.

This work builds upon previous works that measure covertness as a function of gain
difference between the intended user and the illegitimate observer [9], where only the ra-
diometer is considered. It expands the literature by considering more detector types, like
cyclostationarity detectors, as well as a plethora of different transmission schemes that have
a variety of covertness properties.

1Although the first paper [6] and most papers on covert communications since then feature a warden
Willie, early papers instead have a detector Dave [7,8] who occupies the same role.
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1.4 Thesis Structure
This thesis formally describes the covert communications scenario fully in Chapter 2, with
the fundamental limits of covert communications discussed in Section 2.1 and a literature
review of extensions and modifications to basic covert communications are discussed in
Section 2.4 (e.g., covert communications under jamming, using relays, using multiple input
multiple output (MIMO), etc.).

Next, the transmissions schemes that Alice and Bob use are described in Chapter 3,
starting with basic modulations in Section 3.2, spread spectrum (SS) technologies in Sec-
tion 3.3, and several more exotic chaotic communications schemes in Section 3.4.

Following this description of communications schemes, detector theory is explained in
Chapter 4, where Willie applies the statistics of hypothesis testing to create effective de-
tectors, alongside the mathematics of all the different types of detectors that Willie could
employ.

After the basic strategies that Alice and Willie can employ are laid out in the sections
above, we move on to a literature review of prior works that provide a metric to evaluate
the covertness of transmission schemes in Chapter 5.

The model that underpins the simulations in this thesis is described in Chapter 6.
Herein, the channel model and implementation details of the detectors are explained thor-
oughly. The results of simulations using this model are shown in Chapter 7. The detectors
are compared in Section 7.1, and transmission schemes are compared in Section 7.2, while
the overall implications for the covert communications scenario are considered in Section 7.3.

The thesis concludes with a summary of the contributions in Chapter 8, which addresses
several open questions and ideas for future work in Section 8.2. The key take-away points
of my investigation into quantifying covert communications are given in Section 8.3.
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2 Covert Communications

The fundamental limits on how much information can be sent “reliably” to Bob but “de-
niably” to Willie have been found and precisely characterized for a wide variety of situ-
ations. These limits come in the form of achievability bounds, most often proved using
either Kullback–Leibler divergence [6,10–12] (also known as relative entropy) or variational
distance [13–15] as a metric for quantifying covertness.

These achievability arguments are based on measuring how similar the observations of
the channel look when Alice transmits compared to the case when she is not transmitting.
Although theorems have been discovered that prove that a certain covert information ca-
pacity is achievable, no algorithm has been developed to build a communications scheme
that achieves that capacity1.

This chapter discusses fundamental limits around the throughput rate of information
that can be transmitted covertly in a variety of different scenarios, as well as practical
techniques to increase the “covertness” of a transmission.

2.1 The Square-Root Law
In general, it can be shown that O(

√
n) bits2 of information can be transmitted covertly in

n channel uses3 [6–8,10,11,17–23]. The square-root law (SRL) applies to many versions of
the problem, and the exact scaling constant has been found for many scenarios, including
single input single output (SISO) AWGN channels [6, 10, 11], binary symmetric channels
(BSCs) [20, 24], multiple input multiple output (MIMO) Rayleigh-fade channels [8], and a
broad class of discrete memoryless channels (DMCs) [10,19,20].

In these scenarios, there are several common assumptions. Alice needs to have a lower
bound on the noise level observed by Willie4 [6, 7]. It is also assumed that Willie knows
the channel state information (CSI), background noise level, and all the details about the
communications protocol used by Alice and Bob, exempting a shared secret that Alice and
Bob may have prearranged. No pre-shared secret key is required if Alice and Bob know that
Willie observes less signal energy than Bob [10,17] (e.g., Alice is using a directional antenna
pointed at Bob). If Willie and Bob see the same noise power and channel distortion, then a

1Under AWGN only channels it can be shown that Gaussian signaling is the optimal form of LPI/LPD
communication [12, 16] for minimizing the bit error rate (BER) at Bob, but not for maximizing covertness
at Willie [17].

2For an explanation of the big-O(·), small-o(·), and Ω(·) notation, see Appendix A.1.
3A channel use in the context of DMCs (see Section 2.3) is a single message that Alice sends within a

discrete time block.
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secret key of length O(
√
n) needs to be shared between Alice and Bob beforehand. The pre-

shared key could allow Alice and Bob to coordinate the transmission signal characteristics in
several ways. They key could pre-arrange transmission times to evade detection by Willie,
or may be a spreading sequence, or frequency hopping pattern.

The square-root scaling comes from the mathematics of binary hypothesis testing [11];
the SRL in covert communications mirrors a similar SRL first discovered for steganogra-
phy [4, 25], where O(

√
n) bits can be covertly hidden in data (e.g., an image file) of size n

bits.

2.1.1 Exceptions to the Square-Root Law
There are some cases where Ω(

√
n) bits can be sent in n channel uses. O(n) bits can be

transmitted in several situations:
• when Willie does not have a good estimate of his channel [26–29],
• when Alice is aware that Willie observes less signal energy than Bob [10],
• when Alice can predict the instantaneous background noise and channel state [30,31]5,
• when a jammer helps (see Section 2.4.2),
• when Alice hides her message among public messages, or within a public message (see

Section 2.4.5).
The O(n) scenarios listed above allow for a positive (non-zero) covert rate (see Section 2.2).
This means that given infinte time, Alice can send an unbounded amount of information
without being detected.

If Willie’s receiver observes noise, but Bob’s receiver is perfectly noiseless, then Alice can
transmit O(

√
nlog(n)) bits in n channel uses [24,32]. If Willie does not know in which time

slots Alice transmits, her covert capacity becomes O(
√
n log(T (n))), where Alice transmits

in one randomly selected symbol period every T (n) symbol periods (see Section 2.4.1).

2.2 Covert Capacity
The covert capacity of a channel is how much data can be sent covertly within n channel
uses in the asymptotic limit where n → ∞. Scenarios characterized by the SRL have zero
covert capacity because limn→∞

O(
√
n)

n = 0. This implies Alice cannot reliably transmit
(with arbitrarily low error rate) to Bob forever without Willie detecting her.

Although the covert capacity is zero, this result only applies in the limit as n → ∞. For
any finite period, Alice can still reliably and covertly transmit a finite number of bits [19,
33–35] with the SRL scaling. Thus, in LPI/LPD communications we are more concerned
with the number of reliably and deniably transmittable bits within n channel uses with a
finite n, as opposed to the number of bits per channel use as n → ∞.

A positive covert capacity, i.e., transmitting Ω(n) bits covertly, is achievable via every
O(n) situation described in Section 2.1.1. A positive covert capacity implies that Alice

4Indeed, if there is no noise, distortion, fade, or path loss at all at Willie’s receiver, then Alice cannot
transmit without being detected.

5The situation where Alice knows the instantaneous background noise at every moment at Willie’s
receiver requires her to essentially predict the future. This is considered impossible, yet the mathematics
have been worked out [30,31] should this situation should ever arise.
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can transmit an unbounded quantity of information to Bob, eternally, without Willie ever
acquiring solid evidence of her having used the channel. Moreover, in most practical en-
vironments, there will be public messages on the channel, complex channel distortion, and
Willie will not know the transmission time. A positive covert capacity should therefore be
practically achievable, enabled by multiple factors.

2.3 Discrete Memoryless Channels
Wireless communications involve using antennas to measure and change the electromag-
netic spectrum to receive and send messages. Although electromagnetic fields are treated
mathematically as continuous, when antenna input signal is sampled by the analog digital
converter (ADC) of a digital receiver, they are discretized in time by sampling rate and
voltage. The output of an ADC is a sequence of numbers representing the voltage over
time. This is essentially the receiver side of a DMC. The input side of the DMC is the in-
formation bits the sender transmits, and in-between the channel is modelled as the function
that maps what symbols were transmitted to what symbols were received.

Formally, a DMC is an input alphabet, Xn = {x1, x2, . . . , xn}, which maps to an output
alphabet Y n = {y1, y2, . . . , yn} via a random conditional transition probability law, PY n|Xn .
An example is seen in Fig. 2.1, where PY n|Xn is the transition probabilities for Bob, and
PWn|Xn is the transition probabilities for Willie’s channel and Willie’s output alphabet.
Fig. 2.1 presents a depiction of such a DMC.

The random transition law models a signal being corrupted by random noise, and ab-
stracts away all the physical details of the problem to just the output symbols of the
detector. A DMC is “memoryless” because the transition probabilities do not depend on
prior channel usage.

My simulation for this thesis [36] has an alphabet consisting of tuples of IEEE-754 [37]
64-bit floating point numbers representing the sampling of real values of an antenna by an
ADC.

Figure 2.1: Model of a covert communications channel as a DMC. (Source: Letzepis [19])
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Figure 2.2: A depiction of a shadow network. The general problem can account for multiple
discreet transceivers and multiple wardens, as well as jammers, relays, and neutral trans-
mitters. In this work, the view is restricted to just the scenario involving Alice, Bob, and
Willie. (Source: Bash et al. [23])

2.4 Further Scenarios
The literature has characterized many other variations of this problem. This section dis-
cusses some of these other scenarios and their implications. Fig. 2.2 shows the small subset
of the generalized shadow network problem considered in this thesis. All the extensions in
this section are beyond the bounds of this work, as they do not cut to the core of the covert
communications problem.

2.4.1 Pre-Arranged Transmission Time
If Alice and Bob arrange before to only transmit during one random slot out of every T (n)
slots, then Alice can send O(min{

√
n log(T (n)), n}) bits in n channel uses. Since Willie does

not know when Alice transmits, he has to observe the channel for a longer period than Bob
does, collecting more background noise, thus increasing Alice’s covert capacity [38]. The
only additional cost to Alice and Bob is the necessity of a length O(log(T (n))) pre-shared
secret key between them.

2.4.2 Transmitting Noise
Artificial noise received by Willie can deceive him about the true channel statistics, which
allows Alice to transmit more bits covertly. Alice can even achieve a positive covert capacity
and transmit O(n) bits when a jammer is present [39–43] (represented by a circle in a red
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dot ( ) in Fig. 2.2). This is true even if Alice cannot coordinate with or control the
jammer [40–43]. Alice and Bob can also transmit artificial noise themselves to increase
their channel capacity [44,45].

2.4.3 Shadow Networks
The minimal covert communications scenario just concerns Alice, Bob, and Willie, but
this situation can be extended to include multiple discreet transceiving parties, multiple
wardens [46], neutral parties, jammers, and more, as illustrated in Fig. 2.2. The goal of the
covert parties is to form a “shadow network” [23], where communications are transmitted
reliably amongst a network of covert transceivers while not being detectable to a group of
wardens.

Situations with multiple covert parties transmitting to either a single receiver [21, 47]
or multiple receivers [22,48] both follow the SRL. Section 2.4.7 discusses how beamforming
to steer more energy towards Bob and away from Willie can allow for non-zero covert
capacity. This is a simple way to create a usable shadow network (provided Willie is not
on the beampath).

2.4.4 Relay Networks
Relays repeat transmissions that they receive, transponding messages to endpoints, which
are otherwise out of reach. Use of relays (a red dot with multiple connective edges ( ) in
Fig. 2.2) in covert communications allows a greater amount of data to be transmitted [39,
49–52], as Alice can lower her transmission power—she only has to reach the relay instead
of transmitting all the way to Bob.

2.4.5 Using Public Messages
Most electromagnetic spectrum users are not concerned with transmitting discreetly6, and
their transmissions have predictable structure and occupy predictable frequencies and band-
widths. These non-discreet transmitters are said to be broadcasting “public” messages,
which can be used to hide covert messages [53–56], usually with positive covert capacity.

Any detector that simply measures the power level of the spectrum and compares it
to an estimate of noise power (see Section 4.2) is rendered useless in this scenario, as it
does not discriminate between signal types whatsoever. If Willie knows the structure of the
public message types and filters them out, this may not be enough—for Alice can embed
her message inside the public message if she knows its structure as well [55, 56].

For Alice, this is an easy way to avoid low transmit power and low transmit rates, as
transmissions of covert users become undetectable when the number of non-covert users
increases [53], and a positive covert capacity can be achieved7.

6As far as we can tell.
7This also depends on Alice having an accurate assumption of what public messages Willie can see. As

in the “hidden node” problem [57,58], Alice may see public messages from a transmitter due north of her, so
if Willie is due south then he will receive the public messages at a much lower signal-to-noise ratio (SNR),
leading Alice to overestimate the public message power.
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2.4.6 LPI/LPD Radar
There is a very active literature that focuses upon LPI/LPD radar [59–63]. While impor-
tant, LPI/LPD radar poses a slightly different problem than LPI/LPD communications.
LPI/LPD radar waveforms need to successfully reflect electromagnetic energy off their tar-
get to detect it, which brings in a host of other problems and considerations. Fortunately
Alice has no such requirement to willfully send any energy towards Willie in the covert
communications scenario.

2.4.7 Beamforming & MIMO
Whenever Alice has more antennas, she can transmit more information covertly [7,15,64–67].
With either a directional antenna or multiple antennas in an array, combined with knowledge
of Bob’s location, Alice can steer her beam so that Bob receives more power than Willie.
This allows a positive covert capacity when it results in Bob having a higher SNR than
Willie.

If Alice has knowledge of Willie’s location, she can use beamforming to aim a null at
him for increased covertness. In the massive MIMO case (or if using a laser beam [68]) the
sidelobes disappear, and Alice achieves the regular MIMO channel capacity limit with Bob,
as Willie is unable to observe any energy from Alice unless he lies on the beampath. This
“wiretap” scenario falls under the SRL regime.

If Alice has location data of Bob and/or Willie, in conjunction with control over one or
more intelligent reflecting surfaces (IRSs) [69], she can use their beamforming abilities to
reflect more energy away from Willie towards Bob.

2.4.8 Quantum Mechanics
The SRL has been shown to apply to bosonic8 channels [70,71]. A bosonic channel consists
of a beam (potentially a laser beam) and a beamsplitter where Bob and Willie each receive
one half of the split beam. AWGN is replaced by quantum thermal noise in this model.

Other research has shown that repurposing algorithms for quantum key distribution
(QKD) to make use of anti-eavesdropper properties [72] demonstrates that positive rate
covert communication is possible on a quantum internet with both passive and active eaves-
droppers.

8A boson is a particle that has spin- 1
2
, which means an unlimited number of them may occupy the same

quantum state. Bosons include photons, which make up the electromagnetic field, as well as all the other
so-called “force-carrying” particles.
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3 Transmission Schemes

Alice and Bob will be testing the efficacy of a variety of spread spectrum (SS) techniques and
other LPI/LPD methods, alongside several traditional forms of communications modulation
to serve as a baseline of performance.

The papers in the previous section all take an information-theoretic approach to derive
the fundamental limits of undetectable communications using random coding arguments.
This means that any arguments for how to construct covert codes only apply to the abstract
symbol alphabet of a DMC, and are divorced from the physical constraints of a wireless
transmission environment. Thus, we do not have an algorithm for generating covert commu-
nications systems (CCSs), as information symbols must be modulated onto electromagnetic
waves; symbols do not simply teleport from a transmitter to a receiver.

This section describes several techniques to modulate electromagnetic waveforms in
a way that decreases detectability. The techniques listed below can be (and often are)
combined [73–75] to acquire the benefits of their differing properties.

Most modulation schemes encode data onto a sinusoidal wave at a particular frequency
in the electro-magnetic (EM) field, and all the parameters of this sinusoidal waveform are
mathematically represented in (3.1):

A cos(2πfct+ ϕ). (3.1)

3.1 Baseband & Passband
Disturbances in the EM field can be measured by an antenna and converted to a digital
signal by an ADC, described in Section 2.3. As per the Shannon-Nyquist theorem [76],
digital signals cannot have frequency components (fmax) greater than twice the sampling
rate, fs in order to avoid aliasing:

fmax =
fs
2
. (3.2)

This means that monitoring a wider band requires a higher sample rate.

3.1.1 Complex Baseband
The simulation was implemented using signals represented in complex baseband, which
decreased the number of samples required to produce results. Baseband, also referred to
as in-phase and quadrature (I/Q) data, allows the entire sine wave of (3.1) to be described
as a single point in the 2D complex plane. Given a complex point z = x + iy = Aeiθ, the
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amplitude A of the sine wave is |z| = |Aeiϕ| = A. The phase is arg(z) = ϕ. Thus, an
entire sine wave is perfectly represented as a single complex number, instead of as a discrete
list of real numbers representing a sine wave being sampled at a rate fs. The baseband
representation notably also allows for a description of a modulation without reference to a
specific carrier frequency fc, and without needing to specify a bandwidth. Baseband is so
frequently employed in modern radio frequency (RF) technology because of the reduction
in sample rate required to faithfully represent the signal.

Figure 3.1: Conversion of a passband signal to baseband I/Q symbols. The received signal
r(t) is multiplied by a sine and a cosine wave at the carrier frequency, fc. This reproduces
the signal at zero Hertz (or baseband), where it can be isolated by the low pass filter. rI(t)
represents the in-phase (real) part, while rQ(t) represents the quadrature (imaginary) part.

This ability to represent a signal independent of frequency requires the narrowband
assumption; i.e., the carrier frequency fc must be larger than the bandwidth W , or fc >
W = fs

2 . Thus the baseband model is equivalent to multiplying the antenna signal by the
carrier frequency fc, then running it through a lowpass filter of size W , as in Fig. 3.1. The
real component, or the I portion, comes from multiplying the received signal by a cosine
wave of frequency fc. The imaginary, or Q component, comes from multiplying the signal
by a cosine wave of frequency fc that is phase shifted by π

2 .

3.2 Basic Modulations
The basic transmission schemes described in this section serve as a baseline to compare
against more “covert” waveforms designs described later. These work by modulating data
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onto a set of complex symbols, called a constellation. Several constellations for basic mod-
ulations are depicted in Fig. 3.2. The constellation points consist of different values for the
amplitude A, frequency fc, and phase ϕ [77, Ch. 3], and form the basis for understanding
more advanced transmission schemes.

Fortunately, as a result of using the complex baseband representation of a signal de-
scribed in Section 3.1, any variation in the amplitude A and phase ϕ can be represented as
a point in the complex plane, which disregards the carrier frequency fc.

3.2.1 Phase Shift Keying
In phase shift keying (PSK), data is modulated onto a carrier wave by changing its phase.
The phase is represented by ϕ in (3.1). The simplest variant of phase shift keying (PSK) is
binary phase shift keying (BPSK), which has two phase offsets to encode the “1” and “0”
bits: ϕ is either 0 or π. The I/Q constellation for binary phase shift keying (BPSK) has
points at 1 + 0i and −1 + 0i, as seen in Fig. 3.2a. The receiver for BPSK checks which
constellation point the received symbol is closest to, which amounts to checking if the real
part of the symbol is greater than or less than zero.

Putting two BPSK systems together—one on the I-axis, and another rotated 90◦ on the
Q-axis—produces quadrature phase shift keying (QPSK), which has 4 constellation points,
as in Fig. 3.2b. QPSK is often used as it has twice the spectral efficiency of BPSK. That
is, the BER of QPSK and BPSK is identical under an AWGN channel (see Appendix A.2),
and QPSK transmits twice as many bits per symbol, so it makes better use of the spectrum.

Generalizing the modulation further, M -ary phase shift keying (M -PSK) is a modulation
with M distinct phases. The phase values of the M -PSK constellation are equidistant points
of a circle around the origin—the roots of unity—with the n-th phase being given by the
following equation:

ϕn = e2πi
n
M , (3.3)

where n ∈ 1, 2, . . . ,M . The receiver here is once again just checking which constellation
point the received symbol is closest to.

3.2.2 Quadrature Amplitude Modulation
Quadrature amplitude modulation (QAM) is best understood by first looking at the con-
stellation diagram (Figs. 3.2d, 3.2e). While M -PSK bunches points around a circle that
become closer and closer together as M increases, QAM seeks to spread out the constel-
lation points in a denser pattern, to maximize1 the inter-symbol distance for a given area.
16-QAM and 64-QAM constellations can be seen in Fig. 3.2d and Fig. 3.2e.

QAM constellations form grids of squares, and every M -QAM constellation transmits√
M bits per symbol. The receiver is once again just finding the symbol that has the lowest

Euclidian distance to the received symbol (as is the case with PSK and amplitude shift
keying (ASK)). A 4-QAM constellation (see Fig. 3.2b) is identical to the QPSK constellation,
and has the same performance and error characteristics.

1Although regular rectangular M -QAM is used throughout this thesis, QAM that uses a hexagonal
grid [77, Ch. 4.7] instead of a rectangular grid is the densest pattern and maximizes inter-symbol distance.
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(a) (b) (c)

(d) (e)

Figure 3.2: The constellations of several common modulations including BPSK (3.2a),
QPSK/4-QAM (3.2b), 8-PSK (3.2c), 16-QAM (3.2d), and 64-QAM (3.2e). (Source: Singh
et al. [78])

3.2.3 Frequency Shift Keying
Frequency shift keying (FSK) modulates data by transmitting sine waves of one or more
frequencies (i.e., modulating data via fc in (3.1). The simplest FSK modulation is to
transmit one frequency (f1) for a “1” bit and a second frequency (f2) for a “0” bit. This is
called binary frequency shift keying (BFSK), and is represented mathematically thusly:

s(t) =

{
1 : A cos(2πf1t)

0 : A cos(2πf2t)
. (3.4)
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The passband representation of M -FSK with M evenly spaced frequencies of spacing ∆f ,
where fc is the lowest frequency, is given by:

s(t) = A cos2π(fc+m∆f)t . (3.5)

where m ∈ {1, 2, . . . ,M}.
A single complex number only represents a particular phase and amplitude—the complex

baseband representation of changes to frequency must also be a function of time. To imagine
what BFSK symbols might look like in complex baseband, translate the signal to the origin
by using middle frequency, fIF = 1

2(f1+f2), such that the resulting frequencies are ±∆f =
±1

2 |f1 − f2|, centered around the zero frequency.
This results in the baseband M -FSK data following the function

s(t) = Ae2πim∆ft, (3.6)

where m ∈ {−M
2 ,−

M−1
2 , . . . , M−1

2 , M2 }. The resulting I/Q points rotate around the ori-
gin, with positive frequencies rotating counter-clockwise and negative frequencies rotating
clockwise. Doubling the frequency means doubling the rotation rate.

The modulations we have seen thus far each have no time dependency in their complex
baseband representation, and thus each symbol can be represented as a single sample (i.e.,
a single complex number). This is because complex baseband is often used to describe
communications schemes without reference to a carrier frequency, while FSK uses several
carrier frequencies. As (3.6) has time dependence, in a discrete-time simulation multiple
samples of s(t) are required to faithfully represent the signal, as each symbol is no longer a
static complex number, but a function of time.

A baseband BFSK receiver measures the angular velocity from sample to sample and
declares a “1” bit if the overall angular rotation was positive (or counter-clockwise), and a
“0” bit when the overall rotation was negative (or clockwise).

3.2.4 Orthogonal Frequency Division Multiplexing
More complex than the previous modulations we have looked at, orthogonal frequency
division multiplexing (OFDM) splits, or multiplexes, a high bandwidth signal onto several
lower bandwidth subcarrier frequencies [79–81]. This spreads out the frequency spectrum of
the signal and increases resistance to multipath interference and frequency-selective fading
(FSF) [82]. The usage of orthogonal frequencies in OFDM means there is no inter-symbol
interference (ISI) between subcarriers. Orthogonal frequencies are found automatically
when the OFDM symbol is generated by an inverse fast-Fourier transform (IFFT).

OFDM can be transmitted by taking groups of M complex data symbols and passing
these signals through an IFFT with M bins, as in Fig. 3.3. Some of these M bins may not
contain data bits in order to act as pilot signals, which increase synchronization at the cost
of lower data throughput [82]. The receiver similarly groups received complex symbols into
groups of M before passing them through a fast-Fourier transform (FFT) with M bins to
recover the transmitted data stream.

The modulated data that is the input in Fig. 3.3 can be any modulation with any
amplitude and/or phase-modulated signal, like ASK, PSK, and QAM.
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Figure 3.3: A block diagram of an OFDM transmitter and receiver. (Source: Kaur &
Kansal [83])

A suitable demodulator needs to be added to the end of the block diagram in order
to recover the original bitstream. Thus, OFDM must always be chained with another
modulation scheme. The simplest OFDM scheme is to have the “1” and “0” bits be ±1+0i,
which would be OFDM-BPSK.

OFDM introduces three new parameters to define the modulation. The first is the
number of subcarriers, which determines the size of the FFT needed. The second parameter
is how many of the subcarriers are “pilot” signals. Pilot signals do not transmit any data,
and instead are used to help with channel estimation and synchronization. For example, a
OFDM scheme with 64 subcarriers may use anywhere from 0 to 63 of them as pilot signals.
The latter case would be equivalent to a low rate version of the base modulation, sans
OFDM. The third parameter introduced by OFDM is the size of the cyclic prefix (CP).
The CP is a prefix added to help with multipath propagation.

3.3 Spread Spectrum
Section 3.2 described the basic digital modulations widely used in communications. While
they do not possess notable covertness properties, measuring the relative “covertness” of
different modulation schemes is challenging (as discussed in Chapter 5). It is intuitive that
the more the signal looks like the background noise, and the lower the signal energy relative
to the noise floor across the signal bandwidth, the harder it is to be confident of the existence
of the transmitted signal.

In this section we consider spread spectrum (SS) techniques used to “flatten” a sig-
nal out in the frequency domain [74], as measured by the power spectral density (PSD)
of a SS signal. Traditionally, SS techniques provide anti-jamming and anti-interference
properties [74], as jamming and interference are usually bandlimited. This helps with the
covertness goal; if Willie monitors a limited bandwidth, the SNR will be lower for him.
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3.3.1 Direct Sequence Spread Spectrum & Code Division Multiplex
Access

In direct sequence spread spectrum (DSSS) systems, a signal is multiplied by a spreading
sequence that has a higher rate—the chip rate, k—than the bit rate of information signal.
The higher the chip rate, the more spread out the PSD becomes in the frequency domain.
This lowers the signal energy at Willie if he is using a bandlimited detector. To recover the
data signal, Bob needs to multiply his received signal by the spreading sequence.

Multiple users can occupy the same carrier frequency and bandwidth, transmitting
reliably at the same time, if their spreading sequences are orthogonal. This is called code
division multiplex access (CDMA). Orthogonal spreading sequences suitable for CDMA can
be constructed by using the rows of a Hadamard matrix, which are known as Walsh codes
(WCs). As CDMA is more widely used in the literature, I use CDMA to refer to both
CDMA and direct sequence spread spectrum (DSSS) generally throughout this thesis.

3.3.2 Frequency-Hopping Spread Spectrum
The frequency-hopping spread spectrum (FHSS) technique spreads out the frequency spec-
trum by rapidly changing the carrier frequency over time (or hopping). This makes the
signal harder to intercept unless the hopping pattern is known. Multiple symbols transmit-
ted within a single hop is called slow-hopping. Fast-hopping occurs when the hopping rate
exceeds the symbol rate (i.e., each symbol is split over multiple frequencies). A wideband
receiver could listen over the whole spectrum to hear the message at any frequency, but
knowing the hopping pattern allows a receiver to focus on that narrow bandwidth of the
spectrum and sample the signal at a higher fidelity. The frequency hopping table is derived
from the key that Alice and Bob share, as described in Section 2.1.

3.3.3 Chirp Spread Spectrum
A chirp is a sinusoidal signal whose frequency either monotonically increases (an upchirp)
or decreases (a downchirp). They are difficult to detect due to the fact they continuously
change in frequency and can cover a wide band. Chirp spread spectrum (CSS) occurs
when wideband chirps2 are used to transmit information. Owing to their nature, chirps are
resistant to Doppler effects, and have good performance under multipath fading [84].

Frequency-hopped chirp spread spectrum (FH-CSS) [75] combines frequency hopping
with chirp spread spectrum to prevent signal detection. Bits are represented as upchirps
and downchirps. The chirps occur within a fixed bandwidth, but at randomly selected
frequencies. For Bob to receive the chirps, the series of frequency hops must be derivable
from a shared secret with Alice.

3.4 Chaotic Communications
A chaotic system is a dynamical system that produces a drastically different output given a
small perturbation of the input [85,86]. Signals from such systems are “irregular, aperiodic,

2Not to be confused with the chips of DSSS (Section 3.3.1).
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uncorrelated, broad-band, and impossible to predict over longer times” [87]. Chaotic signals
have zero cross-correlation and zero auto-correlation everywhere except with zero delay (i.e.
t = 0) [88], and lowered cyclostationarity [89], combined with the spreading characteristic.
This makes chaotic signals very difficult to detect.

Modulating an information signal by a chaotic one works effectively as a communications
scheme [90–93], but creates a new problem of synchronizing the chaos generators between
Alice and Bob [94].

3.4.1 Chaotic Shift Keying
Chaos shift keying (CSK) was the first chaotic communications scheme described [87], and
requires N chaos generators to be synchronized (where N ≥ 2). It was first introduced in
1993 [95]. The chaos generators generally have similar attractors, so their values can be
kept in the same broad range. CSK allows a total of N message symbols by simply assigning
the output of each of the N chaos generators, gi(t), t = 1, . . . , N , to a message symbol:

sCSK(t) =


g1(t), if m(t) = m1

g2(t), if m(t) = m2

...
...

gN (t), if m(t) = mN

. (3.7)

3.4.2 Differential Chaotic Shift Keying
Differential chaos shift keying (DCSK) is a classic chaotic communications protocol [90,92,
96–99] that solves the synchronization problem of CSK noted in Section 3.4.1 by transmit-
ting the chaotic sequence alongside the signal. Two time slots are needed for transmitting
each bit. During the first slot an element of a chaotic sequence from a chaos generator is
transmitted. During the second time slot, the chaotic reference is transmitted again for a
“1” bit, and an inverted copy of the reference is transmitted for a “0” bit.

To receive DCSK, wideband delay lines are used to check the correlation of adjacent time
slots. If two time slots are correlated then a “1” bit is output, and if they’re anti-correlated
then a “0” bit is output. Thus DCSK does not employ a shared secret between Alice
and Bob, and—while solving the chaotic synchronization problem—leaves DCSK symbols
recoverable by anyone.

3.4.3 Quadrature Chaos Shift Keying
Quadrature chaos shift keying (QCSK) is to DCSK as QPSK is to BPSK, in the sense
that QCSK is composed of two orthogonal DCSK systems. DCSK only modulates data
onto only the real part of the complex I/Q plane, so QCSK exploits this inefficiency by
adding another DCSK modulator onto the complex plane to double the number of bits per
symbol. These two orthogonal DCSK modulators are, of course, using two separate chaotic
sequences.
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3.4.4 Frequency-Hopped Orthogonal Frequency Division Multiplexing
Differential Chaos Shift Keying

Figure 3.4: A block diagram of a FH-OFDM-DCSK transmitter. (Source: Lie et al. [80])

Frequency-hopped OFDM-DCSK (FH-OFDM-DCSK) [80,100] combines frequency hop-
ping (FH), OFDM, and chaos with DCSK to make a more covert waveform.

A block diagram of FH-OFDM-DCSK is shown in Fig. 3.4. For FH-OFDM-DCSK with
N OFDM subcarriers, N − 1 symbols are split into parallel and multiplied by the current
output of the chaos generator (xk in Fig. 3.4). N − 1 of the subcarriers have data, but
one (d0,k) is just the chaotic symbol xk, left as a pilot symbol to aid in demodulation.
The next block, the “frequency hopping” block of Fig. 3.4, just rearranges all the input
symbols randomly (according to a pre-shared secret key). The remainder of the transmitter
is identical to OFDM (an IFFT, parallel-to-serial conversion, with addition of the CP). The
primary difference to regular OFDM in Section 3.2.4 is that the input symbols are modulated
by a chaotic generator, and the inputs to the IFFT are shuffled for every symbol.
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4 Warden Detection Schemes

How does our warden Willie determine whether Alice has transmitted or not? This is a
binary yes/no question that asks whether Alice’s signal is present, given Willie’s (inherently
noisy) observation of the EM spectrum. Answering this question requires delving into the
mathematics that underlies signal detection: hypothesis testing.

4.1 Hypothesis Testing
Given his observation of the channel, i.e., the received signal r(t), Willie has to decide
between two hypotheses to determine whether Alice transmitted: H0, that he only observed
channel noise n(t), and H1, that he observed both noise and Alice’s signal, s(t):

H0 : r(t) = n(t)
H1 : r(t) = s(t) + n(t)

. (4.1)

Accurately determining which of these hypotheses is true is the crux of detection.

4.1.1 Detector Theory
A detector function takes a received signal r(t), and outputs a value, λ, that is compared
to a threshold. The threshold determines which of the two hypotheses in (4.1) is selected.
D(·) denotes the detector function, whose domain is the signal space, and whose output is
the test statistic λ. It is useful to think of a detector as a black box that takes a signal
and outputs a single number λ. This output test statistic, λ, can then be compared to a
predetermined threshold value λ0. If the threshold is exceeded, then the H1 hypothesis is
selected, otherwise the null hypothesis H0 is chosen. This is represented mathematically as:

D(r(t)) = λ
H0

≶
H1

λ0. (4.2)

There are four cases that can occur with this setup:
• detection: positively identifying a signal when one was transmitted, with probability

PD,
• false alarm: believing there is a signal when none was transmitted, with probability

PFA,
• missed detection: believing that no signal was transmitted when one was transmitted,

with probability PMD.
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• true negative: believing that no signal was transmitted when one was transmitted,
with probability PTN.

These can be defined as conditional probabilities:

PD = P(λ ≥ λ0|H1), (4.3)

PFA = P(λ ≥ λ0|H0), (4.4)
PMD = P(λ < λ0|H1) = 1− PD, (4.5)
PTN = P(λ < λ0|H0) = 1− PFA. (4.6)

4.1.2 Neyman-Pearson Lemma
There is a mathematical way to maximize detections (and ergo PD) for a fixed false alarm
rate PFA. This is the Neyman-Pearson lemma which provides with the uniformly most
powerful (UMP) likelihood ratio test (LRT) [101]. It works by taking the test statistic λ
that is output by the detector D(·), and assessing whether that output from the detector is
more likely when Alice transmitted (P(λ|H1)) or more likely when she did not (P(λ|H0)):

D(r(t)) = λ ⇒ P(λ|H1)

P(λ|H0)

H0

≶
H1

λ0. (4.7)

Our assessment of whether the test statistic λ in (4.7) is more likely to appear in the
H0 case or the H1 case relies on our prior assumptions about the channel and the signal of
interest (SOI). The technique that I used to determine the optimal threshold λ0 is discussed
in Section 6.2.

4.2 Radiometric Detectors
The radiometer—also known as the energy detector, total power detector, or quadratic
detector—is a quintessential tool for any sort of spectrum sensing. By simply summing
the signal power over time, energy detectors are agnostic to all other underlying signal
parameters. If the only thing Willie knows is that Alice’s signal, s(t), is a stationary
Gaussian stochastic process, and the noise, n(t), is AWGN, then the optimal detector as
per the Neyman-Pearson lemma above in Section 4.1.2, (4.7), is the following equation that
calculates the total energy of the signal.:

D(r(t)) =

∫ T

0
|r(t)|2dt

H0

≶
H1

λ0. (4.8)

A generic radiometer is depicted in Fig. 4.1, and consists of a bandpass or lowpass
filter of bandwidth W , followed by a squared magnitude detector and an integrator with
integration period T that feeds into a threshold detector. Willie turns a radiometer into a
detector by measuring the total energy of the bandwidth he is monitoring and comparing
this energy against the power he expects to see from AWGN with variance N0.

The optimal threshold for the radiometer in stationary AWGN has been analytically
determined [102, 103]. With the threshold value equal to N0, Willie’s estimate of the noise
variance, such that λ0 = N0, the detector D(·), specified in (4.8) is:

20



4.2. Radiometric Detectors

Figure 4.1: Block diagram of a bandlimited radiometric detector. The received signal is
passed through a filter of bandwidth W , then squared and integrated over a period T . The
total energy is output and compared to the threshold λ0. If the threshold is exceeded, then
a detection event is recorded.

D(r(t)) =

√√√√ 1

n

n∑
t=1

r(t)2
H0

≶
H1

N0. (4.9)

This thesis work uses the log-normalized version of the metric in (4.8) to stay consistent
with other research [104]:

λEnergy = 10 log10

 ∑
ri∈r(t)

|ri|2
 . (4.10)

How I calculated the optimal threshold, λ0, is discussed later on in Section 6.2.
The radiometer of (4.8) is the most powerful detector of an unknown deterministic

signal under AWGN [105]. As this method relies on an accurate estimate of N0 (and a
constant N0), it does not perform well when the noise power level changes over time, or
under narrowband interference.

A radiometer can be baseband (via intermediate frequency (IF) multiplication plus low
pass filter (LPF), then square and integrate), or bandpass (via band pass filter (BPF)), then
square and sum) [106, Ch. 10]. It is very easy for any other signal to interfere and trigger a
false alarm, as this detector does not discriminate whether the energy source is background
noise, Alice’s signal, or an interfering signal. Using a Chebyshev filter has been shown to
be better than using a Butterworth or a Bessel filter [107] in the filter step of Fig. 4.1.

The probability of signal detection, PD, and the false alarm probability, PFA, both have
closed form solutions under constant variance AWGN. These depend on the bandwidth
W of Willie’s radiometer, as well as how long he observes the channel (i.e., his integration
period T ). Multiplied together these form the TW product. Alongside selecting a threshold
value λ0, all the parameters of the radiometer in Fig. 4.1 have been used to determine PD
and PFA for any deterministic signal using just the energyEsignal [102,105]:

PFA =
1

2
erfc

[
λ0 −N0TW√

2N2
0TW

]
, TW ≫ 1, (4.11)

PD =
1

2
erfc

[
λ0 −N0TW − Esignal√

2N2
0TW

]
, TW ≫ 1. (4.12)
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Here, erfc(·) is the complementary error function, equal to 1 − erf(·), where erf(·) is the
error function. Equation (4.11) and (4.12) only account for the case where Alice is either
transmitting during the whole integration period T , and over the whole bandwidth W ,
or that she is not transmitting at all. However, analytical equations exist for the cases
where Willie only sees part of Alice’s signal [108, 109]; either because her signal is shorter
than Willie’s integration period T , or because of frequency hopping (if Willie is using a
channelized radiometer, see Section 4.2.1).

Equation (4.11) can be re-arranged to calculate the optimal constant false alarm rate
(CFAR) threshold, λ0, using only the TW product, noise variance, and by choosing an
acceptable false alarm rate, PFA [105]:

λ0 =
√

2N2
0TW ierfc [1− 2PFA] +N0TW. (4.13)

Here, ierfc(·) is the inverse complementary error function, defined such that ierfc(erfc(x)) =
x.

4.2.1 Channelized Radiometers
In the sections above we assumed that the bandwidth W is monitored entirely by a single
radiometer. Having a single radiometer is also known as a wideband radiometer.

Creating a channelized radiometer works by dividing the total monitored bandwidth
W into multiple discrete frequency bins that are each monitored by their own radiometer.
If any of the radiometers in the subchannels detects a signal, then a detection event is
registered. This approach of allowing any individual radiometer to unilaterally trigger the
detector is known as a binary moving window detector (BMWD) [110].

By using a channelized radiometer, Willie can filter out public messages more readily
[111]. However, the channelized radiometer has worse performance than the wideband one
with frequency hopping (FH), because when the hop rate increases, each channel has less
signal energy that can be integrated [109,111,112]. Generalized analytical expressions for PD
have been found for channelized radiometers [113], which take into account circumstances
like the radiometer only observing part of a signal transmission due to frequency hopping.

A channelized radiometer may be sweeping [106] (i.e., it is a single radiometer that
monitors the bandwidth around different frequencies), or may consist of a bank of parallel
detectors that monitor a fixed frequency bin. Using a bank of parallel detectors has better
performance than using a frequency-sweeping detector, as they are less likely to miss a
frequency-hopped modulation [108]. However, a bank of parallel detectors is more complex
and expensive.

This work only concerns a one-channel wideband radiometer instead of a channelized
version.

4.3 Matched Filters
Willie can attain better performance by incorporating all the information he knows about
Alice’s signal (e.g., for DSSS-BPSK, the code-rate, symbol rate, and carrier frequency), since
“[i]t is very difficult to design a signal that is not vulnerable to a dedicated detector” [9].
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The optimal detector LRT for a known signal waveform is a matched filter [108, 114–117].
Matched filters have better performance than a radiometer, but only for the waveform they
are matched to.

A detector that consists of a bank of matched filters being run in parallel on the received
signal can be a highly-effective method of detecting those signals whose waveforms are
present in the filter bank. Matched filters perform far better than other detectors when
there is low SNR, interfering signals, or unknown noise power.

4.4 Cyclostationarity Analysis
The radiometer of Section 4.2 ignores signal composition entirely, relying only on the total
energy, while matched filters, discussed in Section 4.3, only examine how closely a received
signal matches a reference signal. Cyclostationarity analysis instead seeks to distinguish
signal from noise by looking for periodic components [118]. Essentially all signals originating
from human sources are based off some modulation of the parameters of the sine wave from
(3.1), so any signal that Alice transmits should have periodic components.

The cyclostationarity of a signal is characterized by its spectral correlation function
(SCF), which is the cyclostationary equivalent of the PSD (see Section 4.4.2). Cyclosta-
tionarity analysis is the best method of detecting weak signals with poor SNR [119].

4.4.1 The Cyclic Autocorrelation Function
In order to calculate the spectral correlation function (SCF), one must first know the cyclic
autocorrelation function (CAF). It measures the autocorrelation response of a signal at
given cycle frequency α, when the signal is at different delays τ . The CAF function, Rα

r (τ),
for received signal r(t), evaluated at cycle frequency α, and delay τ is:

Rα
r (τ) =

∫ ∞

−∞
r(t− τ

2
)r∗(t+

τ

2
)e−2πiαtdt. (4.14)

Equation (4.14) has a dependence on the delay of the autocorrelation signals, τ . To remove
the dependence on τ , one integrates over all possible delays to obtain the SCF proper, as
shown in the next section.

4.4.2 The Spectral Correlation Function
By the Wiener-Khinchin theorem, the SCF for cycle frequency α is simply a Fourier trans-
form of the CAF:

Sα
r (f) = F{Rα

r (τ)} =

∫ ∞

−∞
Rα

r (τ)e
−2πifτdτ. (4.15)

The SCF, Sα
r (f), is the input and basis of all cyclostationarity detectors. The SCF is

equivalent to the PSD at the cycle frequency α = 0. Fig. 4.2 depicts the output of the SCF
for an AWGN signal (Fig. 4.2a), a BPSK signal (Fig. 4.2b), and a CDMA signal (Fig. 4.2c).
The AWGN signal has very little autocorrelation anywhere, except at α = 0, where the
SCF equals the PSD. The BPSK signal shows strong autocorrelation lines around the carrier
frequency. The CDMA shows further autocorrelation spikes when the cycle frequency equals
the chip rate as well.
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(a) (b) (c)

Figure 4.2: The SCF of AWGN noise (4.2a), BPSK (4.2b), and CDMA (4.2c). The carrier
frequency is 0.05Hz, and the bit rate is 1

10 . The noise constant for all three plots is N0 =
1
2 .

The CDMA signal has a chip rate of 64. The sample frequency, fs, is 2560. The frequency
axis, f , and is normalized to range from 0 to 1 (unmapped, it runs from 0 to fs). The cycle
frequency axis, α, is normalized to range from 0 to 1.
The SCF here is calculated using my implementation [36] of the strip spectral correlation
algorithm (SSCA) (see Section 6.3), with N = 215 and Np = 27.

4.5 Cyclostationarity Detectors
The optimal test statistic of the LRT for a weak cyclostationary signal in AWGN [119,120]
once again depends on Willie’s assumptions about the structure of Alice’s signal, s(t). By
generating the SCF of Alice’s expected waveform, Sα

s (f), Willie can compute the SCF of
his received signal r(t) to get Sα

r (f). The optimal test statistic is thus:

λ =
1

N2
0

∑
α

∫ ∞

−∞
Sα
s (f)

∗Sα
r (f)df. (4.16)

Equation (4.16) depends on knowledge of s(t), and incorporating this knowledge serves to
create a matched filter (discussed in Section 4.3).

Nevertheless, we can proceed by finding other ways to reduce the SCF to a single number,
λ, when Willie has no knowledge of Alice’s signal. One way of doing this to detect a signal
with an unknown composition under AWGN is by taking the period-normalized sum of the
SCF:

λ(α) =
1

T

∑
f

|Sα
r (f)∆t|. (4.17)

This produces a radiometer, equivalent to (4.8), with the same inherent advantages and
disadvantages detailed in Section 4.2. The metric presented in (4.17) does not exploit any
of the unique properties of the SCF, so several other methods that do are presented in this
section.
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4.5.1 Degree of Cyclostationarity Detector
There are two main metrics in the literature that reduce the SCF to a single output statistic
λ. The first and most widely employed way to characterize the cyclostationarity of signals
is the degree of cyclostationarity (DCS) [104,120–122].

The DCSα for a particular cycle frequency α is calculated by

DCSα =

∑
f |Sα

r (f)∆t|∑
f |S0

r (f)∆t|
. (4.18)

The total DCS of the signal is calculated by summing over all non-zero cycle frequencies α:

DCS =
∑
α ̸=0

∑
f

|Sα
r (f)∆t|. (4.19)

The α = 0 cycle frequency is ignored, which is that part of the SCF that is equal to the
PSD. The particular metric I am using is a log-normalized version of (4.19):

λDCS(α) = 10 log10

∑
α ̸=0

∑
f

|Sα
r (f)∆t|

 . (4.20)

4.5.2 Max Cut Detector
The second metric that uses the SCF employed in this work is the maximum cut method [120],
which picks out the largest squared peak for each cycle frequency. It is given by:

λMAX(α) = 10 log10
[
maxf (|Sα

r (f)∆t|2)
]
. (4.21)

The metric provided in (4.21) is quite similar to DCS, except it notably includes the PSD
of the signal found at α = 0.

4.6 Other Detector Methods
There exist several other methodologies for creating detectors, including correlation de-
tection (CD) [123], cepstrum analysis [124], and Eigenvalue detectors [125]. For a more
comprehensive taxonomy of detector types (as well as their relative merits and disadvan-
tages) see Ali et al. [125].

4.6.1 Normal-Distribution Test
Also known as D’Agostino and Pearson’s omnibus test of normality [126,127], the normal-
distribution test checks how similar a received signal is to a Gaussian distribution by exam-
ining the skew and kurtosis of the received samples. This is sort of like creating a matched
filter for the channel noise, instead of for Alice’s signal.

This test is only expected to work on AWGN channels, as other channel distortion
types will result in non-Gaussian noise. It takes advantage of more information from the
signal than the radiometer does. This is the only correlation detection (CD) detector I am
employing.
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5 Metrics for Covertness

Several metrics for quantifying covertness have been presented in the literature. Some take
into account specific geometric and physical information, like position of the agents, and
transmitter antenna pattern. Other metrics are more generalized and abstract away the
physical layer.

5.1 Energy Based Metrics
Since radiometers are agnostic to the underlying signal structure, much research has been
conducted to determine the relationship between PD, PFA, and the SNR for these systems.
Urkowitz [105] first established analytical bounds for PD and PFA for wideband radiome-
ters at different SNRs, signal bandwidths, and observation times. These are presented
in (4.11) and (4.12). Expressions for PD and PFA have also been found for channelized
radiometers [113].

These analyses assume that Willie knows the noise variance, N0, and this noise variance
does not change. But how does Willie come to learn the noise variance? When Willie has to
estimate N0 himself, it can be shown that even a small amount of uncertainty in the noise
power estimate can lead to markedly reduced detector performance [128, 129] compared to
theoretical perfect knowledge case. Throughout this thesis I assume that Willie has perfect
knowledge of N0, (and Alice’s SNR) however. Some more concrete metrics of covertness are
discussed below.

5.1.1 Detectability Distance
In the classic paper that created a metric to quantify communications covertness, Weeks et
al. [130] define the “detectability distance”. Assume that Alice and Bob are close together
while Willie is a distance r from Alice and a distance d from Bob, with r > d . Place Willie
collinear to Alice and Bob, with Bob sitting in between Alice and Willie (such that Alice
is a distance r − d from Bob), as in Fig. 5.1. Assume that Alice and Bob are transmitting
using the minimum required SNR1 to achieve their desired BER. The metric is based off
the ratio r

d of Willie to Alice and Bob: “As the detectability distance gets smaller, [Willie]
must get closer to the transmitter to detect a transmission and the system becomes more
covert.” [130] The detectability distance is thus the distance ratio r

d where PD has some
acceptable value2.

1Weeks et al [130] actually use Eb
N0

= 10dB to evaluate the covertness systems in their paper.
2Weeks et al [130] use PD = 1

2
.
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Figure 5.1: The setup for the detectability distance metric [130]. Alice, Willie, and Bob are
all collinear, while Alice and Bob use the minimum required SNR to communicate.

This geometric model thus accounts for path loss (assuming unity gain omnidirectional
antennas for Alice and Bob). Weeks et al. [130] tested several commercial off-the-shelf
(COTS) modulations with detectability distance: GSM, IS-54, IS-95 and wideband CDMA.
These cellular modulations leave Alice playing the role of the base station, while Bob acts
as a mobile subscriber.

Figure 5.2: The probability of detection PD versus detectability distance for several COTS
modulations. The curves are step-function-like, and can be reduced to the single point
where PD = 0.5 to compare between modulations. (Source: Weeks et al. [130])

Further research has shown that having multiple Alices and Bobs in a peer-to-peer
shadow network drastically increases detectability by Willie [131], as both the average and
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the minimum detectability distances decreases when there are more covert transceivers.

5.1.2 CEVR & SEVR
Circular equivalent vulnerable radius (CEVR) [132,133] and spherical equivalent vulnerable
radius (SEVR) [134] are two energy-based detection metrics that apply not only to covert
communications, but to LPI/LPD radar and RF aircraft stealth as well. This implies they
only look at how detectable Alice is to Willie, ignoring the BER for Bob. Both circular
equivalent vulnerable radius (CEVR) and spherical equivalent vulnerable radius (SEVR)
focus on only three parameters:

1. the performance of Willie’s detector,
2. the channel between Alice and Willie,
3. Alice’s antenna pattern.

The primary difference between the two metrics is that CEVR is circular and 2-dimensional,
while SEVR is spherical and 3-dimensional, taking into account the full 3-D antenna pattern
at Alice.

They are both evaluated by selecting the maximum PFA allowed and the minimum PD
required by Willie. To evaluate the CEVR, integrate the total area from each viewing angle
of the antenna where the SNR is sufficient to attain the specified PD, called the area of
detection, or Adet in (5.1). A circle with an equivalent area defines the CEVR, or area of
probable detection. Note that this smooths out the effects of lobes.

CEVR =

√
Adet
π

. (5.1)

SEVR, as the three-dimensional extension of CEVR, defines a detection volume, Vdet,
wherein the SNR is sufficient to achieve the defined PD and PFA. The SEVR is defined
below in (5.2) as the radius of a sphere with volume Vdet:

SEVR =
3

√
3Vdet
4π

. (5.2)

As these metrics rely on physical and geometric parameters like antenna pattern and
distance, they are not considered in this work, as introducing these physical layer charac-
teristics reduces the generalizability of the results.

5.1.3 Detectability Gain
Detectability gain [9] generalizes detectability distance by considering the gain (or SNR)
difference between Willie and Bob. The gain difference between Willie and Bob is

GB,W = SNRW − SNRB, (5.3)

which accounts for all path losses, antenna gains, and system losses. If Willie has a path loss
PlW , antenna gain aW , and other “system” losses, given by LW , and if, correspondingly,
Bob has path loss PlB, antenna gain aB, and system loss LB, one can expand (5.3):

GB,W = PlB − PlW − aB + aW + LB − LW . (5.4)
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Here “losses” (in dB) are defined to be positive numbers that are subtracted, and “gains”
are added, in order to better see the effect on covertness. Note that the gain difference,
GB,W , has no dependence on Alice’s transmit power. If (5.4) is evaluated only in terms
of the path loss, then the detectability distance metric from Section 5.1.1 is derived as a
special case of detectability gain,

The full detectability gain, G, also accounts for the loss that Willie suffers from not
integrating Alice’s entire signal, LE , and the loss incurred by Willie integrating excess
noise, LN :

G = GB,W − LE − LN . (5.5)

The procedure to calculate the detectability gain is to first assume that Bob’s SNR is
sufficient to achieve a specified BER. Willie’s probability of false alarm and a TW product
are also specified. Next, the probability of detection, PD, is calculated as a function of G.
The detectability gain is thus the value of G where PD reaches a specified value.

Figure 5.3: The probability of detection PD versus the gain difference G in dB for a single
symbol sent by Alice. G is the SNR gain difference between Willie and Bob after accounting
for all system and path losses/gains. These results are for a single symbol (q = 1) containing
either k = 8 or k = 10 bits with TRWR product values of 100, 500, and 1000. The probability
of symbol error at Bob, Ps, and the probability of false alarm for Willie, PFA, are both
10−4. (Source: Dillard and Dillard [9])

Fig. 5.3 plots the probability of detection PD versus the gain difference, G, between
Willie and Bob. Fig. 5.3 shows that for a single symbol (q = 1) containing k = 10 or
k = 8 bits, Willie must increase his gain G relative to Bob’s to achieve an increase in PD
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for a fixed symbol error rate Ps and PFA. If Willie increases his time-bandwidth product
(TRWR in Fig. 5.3), he must achieve a larger gain G to maintain the same PD. Since Alice
is transmitting a single symbol in this example, Willie integrates unnecessary noise when he
increases his TW product, which reduces his detection ability, necessitating a higher gain
difference, G. If Alice was transmitting symbols to occupy Willie’s entire TW product, his
gain difference would be lower.

Dillard and Dillard [9], when introducing the concept of detectability gain, only con-
sidered a radiometer under an AWGN channel. Notwithstanding, the framework they pre-
sented is actually generalizable to other types of detectors. Detectability gain depends on
only PD, PFA, and the gain difference between Willie and Bob; there is no specific de-
pendency to any kind of detector. However, analytic solutions may not be available. By
generalizing beyond the radiometer one introduces several new dimensions to the problem—
mainly the explosion in parameter space from the combination of each detector type with
each transmission scheme. With the radiometer, this was not a problem as it is intrinsically
agnostic to the signal structure.

5.2 Cyclostationarity Metrics
Multiple studies look at the probability of detection with cyclostationary detectors [89,120,
135,136], most of which use either the max cut metric ((4.21), Section 4.5.2), DCS ((4.20),
Section 4.5.1), or simply act as a radiometer as in (4.17).

These detectors can all be combined so that a detection event occurs whenever any of
the sub-detectors detect a signal. Combining cyclostationarity detectors has been shown to
be more effective than relying on any lone detector [137].

The probability of false alarm, PFA, can be analytically determined for cyclostationarity
detectors because calculating it only depends on the structure of the noise—not the structure
of the signal being detected [137].

5.2.1 DCS Ratio
Many papers are concerned with lowering the degree of cyclostationarity (DCS) of their
signal [120–122, 138], instead of trying to evaluate PD and PFA. The desire to reduce
cyclostationary properties of a signal comes not from detector designers, but from signal
waveform designers, who are trying to engineer better transmission schemes for Alice. The
DCS Ratio [122] metric is usually used to quantify an “improvement” to covertness compared
to a some reference signal:

DCS ratio =
DCS of selected signal
DCS of reference signal . (5.6)

DCS ratio allows waveform designers to test and compare how different techniques
affect the detectability of signals by cyclostationarity detectors. This metric only concerns
transmit signal structure, totally ignoring the BER for Bob and the PD/PFA for Willie
for different SNRs. DCS ratio essentially assumes that Willie is using a DCS detector as
described in Section 4.5.1, such that when Alice lowers the DCS of her transmit signal it
should also result in a decrease to Willie’s PD. It is assumed that given two signals, the
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one with the lower DCS ratio is “more covert”, supposing they are measured relative to the
same base signal.

This metric only concerns one aspect of cyclostationarity, so I will be ignoring it in this
work insofar as it does not account for any channel conditions or alternate detectors that
Willie may be using. Additionally, there is no standard term for the denominator in (5.6)
to set as a base signal.
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6 Methods

I sought to answer two questions relating to covert communications:
• Q.1: Which covert communications schemes are best for Alice to use?
• Q.2: What detectors are best for Willie to use?

Answering these questions necessitated building a communications simulation setup as in
Fig. 2.1, with a channel between Alice and Bob, and a channel between Alice and Willie.

I published the simulation code with an open-source licence, and it can be found in
a public repository [36]. This enables others to easily reproduce, modify, and extend the
results of this work, by adding additional modulation schemes, detectors, or channel condi-
tions.

This section details the overall structure of the communications simulation, as well as
all the statistical methods and techniques needed to reproduce the results and figures.

6.1 Simulation Model
Analyzing the tradeoff between the covertness of a transmission scheme and the error rate
requires calculating both the probability of detection, PD, and the bit error rate (BER)
over an AWGN channel. Finding the BER entails measuring the number of bit errors Bob
experiences at different SNRs. Further details and plots of the BERs for all modulations
are located in Appendix. A.2.

Finding the probability of detection, PD, is less straightforward than calculating the
BER. Fig. 6.1 portrays the four of states from (4.3)–(4.6) that Willie can experience. His
detector either receives a signal that is pure noise, as in Fig. 6.1a, or Alice’s signal plus
noise, as in Fig. 6.1b. In this work, in the H0 case, Alice does not transmit at all, and in
the H1 case, Alice transmits during the entirety of Willie’s observation period, T .

The first step towards finding the probability of detection is to run the detector on
many received signals that represent both the H0 and H1 cases at many different SNRs,
in order to estimate the probability distribution functions (PDFs) of the detector output
in either case. The detector function, D(·), discussed in Section 4.1.1, outputs a value λ.
This detector output is not the same as the detector threshold, λ0, which is found using the
process described in Section 6.2.2.

6.1.1 Detectors Available to Willie
All the detectors I have made available to Willie operate without any knowledge of the
signal of interest (SOI), making them “blind-parameter” detectors, and are described in
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(a) (b)

Figure 6.1: This shows the possible events for Willie. For the H0 case (6.1a), if Willie
outputs λ ≥ λ0 he makes a false detection (which has probability PFA). When Alice does
transmit, (6.1b), Willie has either λ ≥ λ0, where he makes a true detection with probability
PD, or λ < λ0, where he misses the detection of Alice with probability PMD.

detail in Chapter 4. This excludes any sort of matched filter (Section 4.3), as matched
filters require specific knowledge of parameters of the SOI.

The detectors available to Willie are:

• The Radiometer (Equation 4.10)
• The Max Cut Detector (Equation 4.21)
• The DCS Detector (Equation 4.20)
• The Normal-Distribution Test (Section 4.6.1)

6.1.2 Transmission Schemes Available to Alice
Here is the list of the transmission schemes that I implemented for Alice and Bob in the
simulation:

• BPSK (Section 3.2.1),
• QPSK (Section 3.2.1),
• CDMA-BPSK, 16 and 64 bit chips (Section 3.3.1),
• CDMA-QPSK, 16 and 64 bit chips (Section 3.3.1),
• QAM, 16-QAM and 64-QAM (Section 3.2.2),
• BFSK (Section 3.2.3),
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• OFDM—modulated by BPSK and QPSK with 16 and 64 subcarriers (Section 3.2.4),
• Chirp Spread Spectrum (CSS) (Section 3.3.3),
• CSK (Section 3.4.1),
• DCSK (Section 3.4.2),
• QCSK (Section 3.4.3), and
• FH-OFDM-DCSK (Section 3.4.4).

6.2 Calibrating the Detector
A detector takes a received signal, then outputs a single real number1, λ, as a test statistic.
When λ is greater than the detector threshold value, λ0, the detector “goes off”, and Willie
notes a detection event of Alice’s transmission as in Fig. 6.1.

How do we know which λ0 is optimal for a specified detector? λ is easy to find; it is
simply the number output by the detector. Although we have analytically determined λ0

for the radiometer in (4.9), Section 4.2, there is not a method to find it generally for an
arbitrary detector.

The detector outputs for the H0 and H1 cases will produce two PDFs2, as shown in
Fig. 6.2. The more that the two PDFs overlap, the less Willie’s detector is able to distinguish
between noise and Alice’s signal. When the means differ, the H0 case becomes clearly
distinguishable from the H1 case, and a threshold can be found to minimize classification
error. Finding λ0 thus becomes a binary classification problem of whether λ is more likely
in the H0 case or the H1 case.

6.2.1 Receiver Operating Characteristic
With estimates of the PDFs of the detector output λ for the H0 and the H1 cases from
the previous section, we can evaluate the performance of detectors for different threshold
values λ0. To measure the performance of a detector with various thresholds, we can use a
receiver operating characteristic (ROC) plot. The ROC is a graph that shows how effective
different threshold values are at performing binary classification. The abscissa3 is the false
positive rate (FPR):

FPR =
PFA
P(H1)

=
PFA

PFA + PTN
(6.1)

and the ordinate4 is the true positive rate (TPR):

TPR =
PD

P(H0)
=

PD
PD + PMD

. (6.2)

There are two main extremes that can arise in a ROC curve. If the binary classifier is
useless (i.e., the true positive rate (TPR) equals the false positive rate (FPR)), then the

1In general, the detector output λ does not strictly need to be a real number, but can be any totally
ordered number.

2Under AWGN noise.
3Or x-axis.
4Or y-axis.
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Figure 6.2: The output of the detector, λ, for both the H0 (noise only) and H1 (noise plus
signal) cases. Although there is some overlap between the PDFs, they are clearly bimodal
and the optimal threshold between them is demarcated with a dotted line at λ = 88, where
the 10% of detections are false alarms.

ROC curve will be the diagonal y = x line spanning from (0, 0) to (1, 1)5. On the other
hand, a classifier that that is accurate 100% of the time will be represented by a point
at (0, 1), where the TPR is 1 and the FPR is 0. The area under the curve (AUC) of the
receiver operating characteristic (ROC) curve can also be used to judge the effectiveness of
a detector. An accurate detector has the area under the curve (AUC) approach one, while
the AUC for a useless detector is 1

2 .
An ROC curve of this type is generated by taking the H0 and H1 PDFs and sliding the

threshold λ0 across the whole range of potential λ values. A non-perfect yet not-useless
classifier will have points on the TPR-FPR ROC graph somewhere between the y = x line
and the point (0, 1). Fig. 6.3 depicts the ROC plot of the PDFs from Fig. 6.2, where we
can see that our optimal threshold, λ0, occurs when PFA ≈ 0.1.

6.2.2 Constant False Alarm Rate
Now, we can assess the performance of a detector given the ROC curve in the previous
section, but we have not yet found a way to pick the ideal threshold λ0. This work only
tests “blind-parameter” detectors for Willie, which stipulates that he does not have any
information about the PDF of the H1 case, where Alice transmits. This restriction precludes

5The ROC curve can never be “below” the x = y line where TPR = FPR. If the ROC curve goes below
this line the detector needs to relabel the H0 and H0 cases, and now performs better than chance.
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6.2. Calibrating the Detector

Figure 6.3: The plot shows the TPR-FPR ROC curve of Fig. 6.2. The optimal threshold,
λ0, (depicted by the large black dot) is around 89, as in Fig. 6.2.

other methods of finding that ideal threshold, like Youden’s J-index [139], that incorporate
both PDFs and thus achieve better performance.

Indeed, for Willie to estimate the PDF of the H1 case requires that he has a made many
valid detections of Alice’s signal, and that he knows Alice’s SNR (which, under AWGN, is
the combination of Alice’s transmit power and Willie’s noise variance, N0). Building the
large dataset required to accurately depict the PDF of the H1 case while also knowing the
SNR of the SOI is unlikely in reality, so Willie must choose the detector threshold using the
output of the detector on a channel consisting solely of noise.

The simplest way to do this, which is ubiquitous in the literature, is the constant false
alarm rate (CFAR) method [9, 102, 108, 113, 120, 131, 137, 140]. With this technique, one
first chooses an acceptable false alarm probability, PFA, and then finds the threshold, λ0,
that achieves the desired PFA. This can be visualized as choosing λ0 such that PFA the area
under the PDF of the H0 case in Fig. 6.2 to the right of λ0 is equal to PFA, or∫ ∞

λ0

P(λ|H0)dλ = PFA. (6.3)
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This is also equivalent to choosing the threshold in the ROC plot in Fig 6.3 by selecting the
λ0 value that is one the line above the desired PFA. In Fig. 6.3, PFA = 0.1, which happens
to be the optimal threshold for these PDFs.

Thus, with the CFAR method, tuning the threshold only requires choosing PFA, which
in Fig. 6.1a only depends on the PDF of the H0 case. Under AWGN, this means that Willie
must have accurate knowledge of his noise variance, N0, at every point in time to get the
PDFs for the null hypothesis at different SNRs.

6.3 The Strip Spectral Correlation Algorithm
The cyclostationarity detectors discussed in Section 4.4 rely on calculating the spectral cor-
relation function (SCF) of the received signal r(t), or Sα

r (f). The strip spectral correlation
algorithm (SSCA) is a computationally efficient algorithm for estimating the SCF in (4.15)
at all values of the cycle frequency, α [104,120,141,142]. It is more computationally efficient
than alternative algorithms [104, 141, 142] that estimate the SCF, like the time smoothing
method (TSM) and frequency accumulation method (FAM).

This is the algorithm I have implemented for Willie to estimate the SCF and perform
cyclostationarity detection. An outline of the algorithm is depicted in Fig. 6.4. First,
N +Np samples6 are taken from the received signal, where N > Np, and put into windows
of size Np. These blocks are xt(1, k), . . . , xt(N, l) in Fig. 6.4, and are then subject to
Hadamard multiplication by a Hamming window function, a(k), and the resulting blocks
(axt(1, k), . . . , axt(N, k) in Fig. 6.4) are then put through an Np-point FFT. After this FFT,
the result is multiplied by its complex conjugate and by another Hamming window, g(k),
which is rotated 90◦, and are multiplied by exponential terms

e
− 2πi(n−1)k

Np (6.4)

for k = −Np

2 , . . . ,
Np

2 − 1 and n = 1, . . . , N . This is all put through an N -point FFT and
the output is rotated 45◦ in the final mapping step of Fig. 6.4 to make it align properly
with the frequency f and cycle frequency α domains.

6.4 The Frequency Accumulation Method
I also implemented the frequency accumulation method (FAM) algorithm to estimate the
SCF. Although it has a higher computational cost compared to the strip spectral correlation
algorithm (SSCA), it is not a one-shot algorithm, and the frequency resolution is tuneable.
This means that a higher resolution SCF can be calculated, but it takes far longer than the
SSCA. It is also a conceptually simpler algorithm to implement.

The frequency accumulation method (FAM) allows you to estimate the SCF for any
arbitrary cycle frequency α, compared to the one-shot SSCA, which has the set of cycle
frequencies computed built into the algorithm. To get a picture of the overall SCF, one can
run the FAM in a “for”-loop over the desired cycle frequencies to get arbitrary resolution
on any particular section of the SCF.

6Where, for the FFTs to be more computationally efficient, N and Np are both powers of 2.
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To perform the FAM algorithm, first the entire signal is Fourier transformed. Next, for
each cycle frequency α, the Fourier transformed signal is circularly shifted left by α, and
multiplied by the complex conjugate of the same Fourier transformed signal that is shifted
right by α. The output of that multiplication is then convolved with a Hamming window
of size Np, and the result of this provides a single slice of the SCF at that cycle frequency
α. The steps above are completed for each α of the SCF that is desired.
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Figure 6.4: The structure of the strip spectral correlation algorithm (SSCA). Samples are
windowed into blocks of size Np and Fourier transformed before being rotated into blocks of
size N and being Fourier transformed again. Lastly, an output mapping algorithm makes
the data suitable for display and plotting. (Source: April [104])
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7 Results & Discussion

Using the methods described above in Chapter 6, the performance of the four detectors
listed in Section 6.1.1 are compared against the covertness of 21 transmission schemes,
which are listed in Section 6.1.2.

The SNRs tested were 150 logarithmically spaced SNRs ranging from −45dB to 12dB
(i.e., they were linearly spaced between the decibel range [−45, 12]). For each combination
of transmission scheme, detector, and SNR, 10, 000 trials were conducted. That is, for each
SNR, the detector was given 10, 000 baseband signals containing only AWGN (to represent
the H0 case) and 10, 000 baseband signals that consist of AWGN plus the transmitted signal.
Each trial signal is 26 + 212 = 64 + 4096 = 4160 complex baseband samples. Two powers
of two are required for the SSCA algorithm that powers the cyclostationarity detectors as
discussed in Section 6.3. Thus, the overall number of samples is a sum of powers of two,
and not a power of two itself. The results were analyzed using the CFAR method with a
false alarm rate of PFA = 0.01.

To make the figures easier to read, the modulations are plotted in specific groups. The
groups are listed below for reference.

Group 1
• BPSK.
• QPSK (4-QAM).
• 16-QAM.
• 64-QAM.
• CDMA-BPSK with a 16 key.
• CDMA-QPSK with a 16 key.
• CDMA-QPSK with a 32 key.
• CDMA-QPSK with a 64 key.

Group 2
• BFSK with 16 samples per symbol.
• BFSK with 32 samples per symbol.
• BFSK with 64 samples per symbol.
• OFDM-BPSK with 16 subcarriers.
• OFDM-QPSK with 16 subcarriers.
• OFDM-BPSK with 64 subcarriers.
• OFDM-QPSK with 64 subcarriers.
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Group 3
• CSS with 16 samples per symbol.
• CSS with 64 samples per symbol.
• CSK.
• DCSK.
• QCSK.
• FH-OFDM-DCSK.

7.1 Detector Comparison
In this section, the relative performance of the four detectors that Willie is using are dis-
cussed. The radiometer, max cut, and DCS detectors were found to be the most useful
for detecting a wide variety of modulations, with the cyclostationarity detectors performing
both better and worse than the radiometer, depending on the modulation. The normal-
distribution detector has significantly worse performance than the other detectors.

7.1.1 Probability of Detection Versus SNR
In order to directly compare the performance of Willie’s detectors, we can make plots like
those in Figs. 7.1–7.10. These plots show how the probability of detection, PD, varies with
SNR for various detectors with a fixed TW product. For all detectors, the TW product
(see Section 7.1.4) is formed from 26+212 = 4160 complex baseband samples. The abscissa
displays the SNR and the ordinate shows the probability of detection, PD. With the CFAR
method, PD → PFA as the SNR decreases, and PD → 1 as the SNR increases. A more
effective detector will have this transition from PD = PFA to PD = 1 occur at a lower SNR
than a worse detector.

Radiometer

As the radiometer is signal agnostic, it only depends on the SNR. Fig. 7.1 shows that every
modulation reaches PD ≈ 1 by the time that the SNR is −10dB, and that every modulation
reaches PD = 1

2 when the SNR is around −14.4dB for this TW product. Increasing the
TW product increases the performance of the detector, which is discussed in Section 7.1.4.

The radiometer detectability curve thus sits as a benchmark of comparison for the other
detector types.

Max Cut Detector

The max cut detector is the detector with the most varied and interesting results. It essen-
tially looks for the “biggest spike” in the SCF of the signal. Figs. 7.2–7.4 show that some
modulations are more easily detected with the max cut detector than with the radiometer
in Fig. 7.1. Several modulations have the same detectability with the max cut method and
the radiometer. These are DCSK, QCSK, and CDMA with a 16-bit chip rate. In these
figures the SSCA was used to estimate the SCF. Similar plots of PD versus SNR for the max
cut detector using the FAM approach to estimate the SCF are presented in Section 7.1.2.
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Figure 7.1: PD versus SNR for the radiometer. PFA = 0.01.

Several modulations are more detectable with max cut than with the radiometer. The
most detectable modulation is CSK, which is somewhat unexpected given that CSK is a
synchronized chaotic method. CDMA also appears to become more and more detectable as
the chip-rate increases. The max cut detector had worse performance than the radiometer
for PSK, QAM, OFDM, and CSS.

All other modulations were detected with PD ≈ 1 when the SNR is −4dB. And every
modulation had PD ≥ 1

2 when the SNR is −7.25dB. A bunch of the modulations clus-
ter together with PD = 1

2 at this −7.25dB gain point, providing a limit to how much a
communications scheme can avoid the max cut detector.
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Figure 7.2: PD versus SNR for the max cut detector with Group 1 with the SSCA algorithm.
PFA = 0.01.

Figure 7.3: PD versus SNR for the max cut detector with Group 2 with the SSCA algorithm.
PFA = 0.01.
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Figure 7.4: PD versus SNR for the max cut detector with Group 3 with the SSCA algorithm.
PFA = 0.01.
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DCS Detector

The performance of the degree of cyclostationarity (DCS) detector has much less variance
than the max cut detector. The PD curves in Figs. 7.5–7.7 are bifurcated into two branches;
one branch was detectable with PD = 1

2 at an SNR of −15dB, while the other branch
reached the same detectability with the SNR at −13dB. The modulations in the “more-
detectable” group at −15dB were BFSK, CDMA, and the chaotic modulation, CSK. The
“less-detectable” −13dB group included all the other modulations. One of these branches
performs slightly better, and one slightly worse than the radiometer, which had PD = 1

2
when the SNR is −14.4dB.

Note that Figs. 7.5–7.7 depict the detectability with SCF estimated by the FAM method.
Using the SSCA produced worse results than the FAM—more of the modulations were in
the −15dB branch, and all modulations had worse performance than with the radiome-
ter. Further discussion of the differences between the SSCA and the FAM is found in
Section 7.1.2.

Figure 7.5: PD versus SNR for the DCS detector with Group 1 with the FAM algorithm.
PFA = 0.01.

As discussed in Section 7.1.2, when the same metric is run on the SCF estimate produced
by the SSCA the detection power decreases, and the PD curves shift to the right by about
1dB to 3dB. So using the SSCA with the DCS metric is almost strictly worse than the
radiometer. As the FAM algorithm has a tuneable parameter to increase its resolution of
the SCF, it may be that increasing the SCF resolution further would continue to increase
the power of this detector. The results in Figs. 7.5–7.7 estimated 500 equally spaced cycle
frequencies α. Doing more, however, would increase the computation time required to
produce results, and so was not pursued further in this thesis.
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Figure 7.6: PD versus SNR for the DCS detector with Group 2 with the FAM algorithm.
PFA = 0.01.

Figure 7.7: PD versus SNR for the DCS detector with Group 3 with the FAM algorithm.
PFA = 0.01.
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Normal-Distribution Detector

Figure 7.8: PD versus SNR for the normal-distribution detector with Group 1. PFA = 0.01.

This detector had the worst performance of all tested. It could detect BPSK with
PD = 1

2 when the SNR was −6dB, which was the best case of any transmission scheme
(shared with DCSK), as seen in Figs. 7.8–7.10. The best case scenario for the normal-
distribution detector was far worse than the worst case of any other detector by about
10dB.

Several schemes were almost undetectable with the normal-distribution detector—namely
any transmission scheme that used OFDM, including FH-OFDM-DCSK. Increasing the
number of subcarriers in the OFDM scheme increased covertness for Alice with this detec-
tor. This test evaluates whether the received signal deviates from a Gaussian distribution.
As the modulation gets more complex, it will tend to look more Gaussian by the central
limit theorem, and therefore be harder to detect using this method.

PSK, FSK, CDMA, and QAM were all detected with PD ≈ 1 by the time that the SNR
was 0dB, so while the normal-distribution detector does function properly as a detector, it
is not a very useful one.
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Figure 7.9: PD versus SNR for the normal-distribution detector with Group 2. PFA = 0.01.

Figure 7.10: PD versus SNR for the normal-distribution detector with Group 3. PFA = 0.01.
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7.1.2 SSCA Versus FAM
Cyclostationarity detectors rely on calculating the spectral correlation function (SCF) of
the received signal. To this end, I implemented both the strip spectral correlation algorithm
(SSCA), described in Section 6.3, and the frequency accumulation method (FAM), described
in Section 6.4. The SSCA has much lower computational complexity and is thus more
efficient than the FAM. The SSCA is also a one-shot algorithm where the selected cycle
frequencies are baked in to the algorithm, thus the spectral resolution is fixed. The FAM,
however, has a tuneable resolution that makes it superior at truly estimating the SCF, as
one can simply run the FAM in a “for-loop” over the desired cycle frequencies α. This work
used 500 equally spaced cycle frequencies, whereas the SSCA was only estimating 64 cycle
frequencies1.

Figure 7.11: PD versus SNR for the max cut detector with Group 1 with the FAM technique.
PFA = 0.01.

Regarding the max cut detector, the SSCA had less variance overall in its ability to
detect transmission schemes compared to the FAM. Figs. 7.11–7.13 show PD as a function
of SNR for the max cut detector when the SCF is estimated using the FAM. Comparing
these figures with the corresponding graphs in Fig. 7.2–7.4 (where the SSCA algorithm is
used), shows the SSCA allowed the max cut detector to detect every tested modulation at
an SNR of 5dB lower than with the FAM. The SSCA also detected CDMA at a lower SNR
than with the FAM, as seen in Fig. 7.11. The FAM, was better at detecting CSK than the
SSCA by 3dB, as in Fig. 7.13. On average, however, the SSCA had better performance
than the FAM with the max cut detector.

1The SSCA algorithm does not benefit much from increasing the number of cycle frequencies beyond
64 [104].
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Figure 7.12: PD versus SNR for the max cut detector with Group 2 with the FAM technique.
PFA = 0.01.

For the DCS detector in Section 7.1.1, there was a clear bifurcation of the modulations
into two branches. In that section, in Figs. 7.5–7.7, the DCS detector results used the FAM.
When the DCS detector is fed by the SSCA instead, the detector performs worse, and more
of the modulations cluster towards the lower branch (where PD = 1

2 when the SNR is
−15dB). As a result, using the DCS detector with the SSCA was strictly worse than the
radiometer in this model. When the DCS detector used the SCF estimate provided by the
FAM, some of the modulations were detected at a lower SNR than with the radiometer, and
some were detected at a higher SNR than the radiometer. The detectability for the DCS
detector with the SSCA is plotted for select modulations in Figs. 7.20–7.25 in Section 7.2.1.

These results highlight the sensitivity that detectors have to the estimate of the SCF.
Although the FAM took much longer to run than the SSCA, it had superior performance
for the DCS detector, and for several modulations with the max cut detector. This high-
lights a tradeoff between the power of a detector and its computational costs; if Willie is
computationally constrained he may consider using the SSCA, as it is much more efficient,
and sometimes performs better than the FAM method.
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Figure 7.13: PD versus SNR for the max cut detector with Group 3 with the FAM technique.
PFA = 0.01.
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7.1.3 Effect of the False Alarm Rate
This work uses the constant false alarm rate (CFAR) method (Section 6.2.2) to determine
the detector threshold and to calculate PD. The CFAR technique introduces a new free
parameter—the false alarm rate, PFA. Naturally, the subsequent question becomes deter-
mining which value of PFA is most suitable. When Willie chooses a higher alarm rate, the
total number of detections increases, but a larger portion of these “detections” are actu-
ally false positives. As PFA decreases, PD also decreases, because the detector threshold is
higher, leading to a reduction in both true detections and false alarms.

Figure 7.14: The probability of detection as a function of SNR for the radiometer with
different false alarm rates. The values of PFA shown are 0.25, 0.15, 0.1, 0.05, and 0.01.

Fig. 7.14 shows the PD versus SNR plot for the radiometer with different values of PFA
using CFAR. CDMA-QPSK with a 64-bit spreading sequence is depicted, but the signal
agnostic nature of the radiometer detector means that the curve shown in Fig. 7.14 is the
same for every modulation. When the SNR decreases, PD settles to PFA. Also note that
when the false alarm rate is lower, the detector requires a higher SNR to achieve PD = 1,
as a result of the higher threshold used. This highlights the importance that Willie choose
an acceptably small PFA to increase his true positive rate (TPR).
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7.1.4 Effect of TW Product

Figure 7.15: PD versus SNR for the radiometer with different TW products (made by
changing the integration time). PFA = 0.01. Doubling the TW product has the effect of
increasing detectability by about 1.6dB.

Section 4.2 introduced the TW product as a factor in the performance of the radiometer.
This is the product of two properties of Willie’s detector: the bandwidth W and integration
period T . Section 5.1.3 explains that if Willie increases his TW product while Alice holds
hers constant, Willie incurs a performance loss due to integrating additional noise. Fig. 5.3
shows the consequences for the probability of detection in this case. A larger TW product
for the warden also increases the odds of signals from other users, degrading his performance
further.

This work assumes that Alice’s transmission either occupies the whole bandwidth and
integration time (H1), or none of it (H0), as discussed in Section 6.1. Increasing the TW
products of Alice and Willie in lockstep also increases Willie’s probability of detection, as
he has more information upon which to base his decision. Fig. 7.15 illustrates that doubling
the TW product2 has the effect of increasing the “detectability” of the transmission by
about 1.6dB. This can be seen in Fig. 7.15 as all points of the PD versus SNR curve move
−1.6dB (or leftwards). This is expected as per (4.12). In all other sections, the sampling
time consists of 26 + 212 = 4160 complex baseband samples between all detectors in order
to keep the TW product constant and to make comparisons between detectors fair.

While the TW product is the only thing that matters for assessing PD, cyclostationarity
detectors are not dependent on the TW product overall, but are rather sensitive to the
particular values of T and W themselves. Increasing the TW product increases the proba-

2Doubling the TW product is done in the simulation by doubling the integration time.
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bility of detection (again, assuming that Alice’s signal still occupies the entire bandwidth
W and observation period T ). While this is simple to do for the radiometer, it introduces
significant computational complexity for cyclostationarity detectors, as larger and larger
FFTs are required to estimate the SCF.

7.1.5 PDFs of the H0 & H1 Cases

(a) (b)

(c) (d)

Figure 7.16: The PDFs of the detectors outputs (λ) for the H0 and H1 cases for BPSK
under the radiometer. The SNRs are 6dB (7.16a), −6dB (7.16b), −18dB (7.16c), and
−30dB (7.16d). PFA = 0.01. The vertical dashed line indicates the detector threshold λ0

that was calculated using the CFAR technique for PFA = 0.01.

Fig. 7.16 shows the PDFs of the H0 and H1 cases for radiometer at different SNRs.
When the SNR is sufficiently high, the detector has no problem differentiating H0 and H1.
This is evident in Fig. 7.16a and Fig. 7.16b, where the probability of detection is PD ≈ 1.
As the SNR decreases, the two PDFs begin to overlap. Alice has only a 10% chance of
being detected (i.e., PD ≈ 0.1) when the SNR is −18dB, as in Fig. 7.16c. When the SNR
drops sufficiently, as in Fig. 7.16d, the PDFs overlap, and the transmission scheme becomes
undetectable, leading to PD = PFA.
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7.1.6 Threshold λ0 Versus SNR

Figure 7.17: The calculated best threshold, λ0, as a function of SNR for the radiometer
with Group 1. PFA = 0.01.

The optimal detector threshold changes with channel conditions. In both Figs. 7.17–
7.18, the optimal threshold λ0 decreases as the SNR increases. This makes sense for a fixed
integration time, as the signal easily cuts through the noise at higher SNRs and is readily
detectable. The line in Fig. 7.17 matches up with the theoretical curve for the radiometer
with this TW product and PFA [105].

The results for the max cut detector in Fig. 7.18 mirror the results of Fig. 7.2, discussed
in Section 7.1.1. Modulations in groups 2 & 3 are similar to those depicted here already in
this section, and are omitted for the sake of brevity,
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Figure 7.18: The calculated best threshold, λ0, as a function of SNR for the max cut
detector with Group 1. PFA = 0.01.

Figure 7.19: The calculated best threshold, λ0, as a function of SNR for the DCS detector
with Group 1. PFA = 0.01.
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7.2 Transmission Scheme Performance
This section details which transmission schemes are best for Alice and Bob to employ, by
taking into account both the detectability and the BER of the protocols. A list of all the
transmission schemes that were tested is in Section 6.1.2, and they are plotted in the groups
listed at the start of Chapter 7.

7.2.1 Probability of Detection and BER
Plots like those in Figs. 7.20–7.25 can help to visualize the performance of a transmission
scheme in terms of both BER and the detectability across multiple detectors. The abscissa
for these plots is the SNR in dB, and there are two different ordinates overlaid on the
same plot. The BER is shown in red on the left-hand side, whilst the PD, as measured by
CFAR method, is in blue on the right-hand side, with different line styles for the different
detectors. The BER always starts at 0.5 when the SNR is low3, then approaches zero as
the SNR increases. The probability of detection, PD, on the other hand, settles to PFA for
low SNRs where the signal is buried in the noise before approaching one (for a functioning
detector) as the signal energy increases.

Figure 7.20: Plot of BER (red, left-hand side), and PD (blue lines, right-hand side) for
BPSK. The SSCA was used to generate the SCF for the cyclostationarity detectors, and
PFA = 0.01.

The plots in Figs. 7.20–7.25 allow for visually determining if Alice can achieve her desired
BER before Willie reaches a given PD for a given transmission scheme. This allows Alice
to accurately assess the overall covertness of her situation and the probability of her being

3The BER can never be higher than 0.5 (i.e., a random coin toss). If the BER is calculated to be 1,
then the true BER is zero, as one needs to merely swap the labels on the “0” and “1” bits.
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Figure 7.21: Plot of BER (red, left-hand side), and PD (blue lines, right-hand side) for
CDMA-QPSK with a 64-bit chip rate. The SSCA was used to generate the SCF for the
cyclostationarity detectors, and PFA = 0.01.

detected, as well as the expected error rate. BPSK, depicted in Fig. 7.20 is harder to detect
than CDMA-QPSK, depicted in Fig. 7.21. The PD curves for BPSK in Fig. 7.20 require
higher SNRs to reach PD ≈ 1 than for CDMA-QPSK in Fig. 7.21. However, by examining
the BER, we see that the CDMA-QPSK has a lower BER than BPSK in these regions,
indicating that Alice can transmit more bits reliably to Bob. If Alice knows that both Bob
and Willie have an SNR of at most −20dB, then she may choose CDMA-QPSK to transmit
information.

All the plots in Figs. 7.20–7.25 have the radiometer line in the same spot, which serves as
a visual benchmark to see the relative shifts in performance of the other detector types. The
results of Section 7.1 are reaffirmed here; Willie can use the radiometer and DCS detector
to reliably detect Alice with PD ≈ 1 when the SNR is −10dB. The normal-distribution
detector is consistently the worst performing of all; in Fig. 7.25, we see that FH-OFDM-
DCSK was never reliably detected by it, even up to +12dB. The cyclostationarity detectors
usually perform slightly better or worse than the radiometer.
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Figure 7.22: Plot of BER (red, left-hand side), and PD (blue lines, right-hand side) for
OFDM-QPSK with 64 subcarriers. The SSCA was used to generate the SCF for the cyclo-
stationarity detectors, and PFA = 0.01.

Figure 7.23: Plot of BER (red, left-hand side), and PD (blue lines, right-hand side) for
16-QAM. The SSCA was used to generate the SCF for the cyclostationarity detectors, and
PFA = 0.01.
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Figure 7.24: Plot of BER (red, left-hand side), and PD (blue lines, right-hand side) for
DCSK. The SSCA was used to generate the SCF for the cyclostationarity detectors, and
PFA = 0.01.

Figure 7.25: Plot of BER (red, left-hand side), and PD (blue lines, right-hand side) for FH-
OFDM-DCSK. The SSCA was used to generate the SCF for the cyclostationarity detectors,
and PFA = 0.01.
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7.2.2 PD Versus BER ROC Plot
If one knows the SNR of both the Alice–Bob channel and the Alice–Willie channel, one can
examine the tradeoff between reliability and deniability by generating ROC plots that com-
pare the BER with the probability of detection. Each point on the ROC plot corresponds
to the BER and probability of detection at a specific SNR. A point near the origin at (0, 0)
indicates that the transmission scheme has no errors and is undetectable at some SNR. A
point near (1, 1) in this curve indicates the transmission scheme is completely unreliable
and always detectable at a given SNR for the specified detector and modulation.

Plotting these ROC curves requires setting the gain difference between Bob and Willie,
and in Figs. 7.26–7.31 the SNRs for Bob and Willie are set to be equal (i.e., the gain
difference is zero). This is not a realistic assumption, as it is likely in practice that Bob and
Willie have different SNRs. A plot of all the BERs of all the modulations can be found in
Appendix A.2.

Figure 7.26: The ROC plot of PD versus BER for the radiometer with Group 1 when Bob
and Willie have the same SNR. PFA = 0.01.

Recurring patterns emerge when accounting for the BER/PD tradeoff in Figs. 7.26–7.34.
CDMA appears as the winner across multiple detectors; i.e., CDMA curves always come
closest to the origin point, (0, 0) (where both the BER and probability of detection are zero),
compared to other detectors. Specifically, CDMA-QPSK with a 64-bit spreading sequence
has the best performance for the radiometer and DCS detector, as seen in Fig. 7.26 and
Fig. 7.32. However, Fig. 7.29 shows that CDMA-BPSK with a 16 bit spreading sequence
was the best modulation under max cut detector. Increasing the size of the spreading
sequence increased covertness.

Figs. 7.26–7.34 all display a somewhat consistent ordering between classes of transmis-
sion schemes. CDMA has the best BER/PD tradeoff, followed by PSK and OFDM. BPSK
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Figure 7.27: The ROC plot of PD versus BER for the radiometer with Group 2 when Bob
and Willie have the same SNR. PFA = 0.01.

and OFDM-BPSK have overlapping curves in all three plots. QPSK and OFDM-QPSK
have worse performance than BPSK and OFDM-BPSK. After PSK and OFDM, is QAM.
The higher the order of the QAM modulation, the worse the performance.

The remaining modulations (FSK, CSS, and the chaotic modulations) all performed the
worst throughout Figs. 7.26–7.34. They each were detected with PD ≈ 1 before the BER
had a chance to drop below 0.4.

Figs. 7.35–7.37 highlight the low effectiveness of the normal-distribution detector first
discussed in Section 7.1.1. Accounting for BER does not change this fact. Figs. 7.35–7.37
show that OFDM is basically undetectable for the normal-distribution detector across a
wide range of SNRs, shown by the lines of the curve for all OFDM modulations being close
to the origin, (0, 0), indicating there are SNRs where Alice and Bob have a positive covert
capacity.

In Fig. 7.37, we see that the line for FH-OFDM-DCSK does not make contact with any
edge of the graph. It is undetectable in the given SNR range, as the line does not come
close to PD = 1, but is also an unreliable transmission scheme, as the BER did not even
reach 10−2 in the simulation SNR range.
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Figure 7.28: The ROC plot of PD versus BER for the radiometer with Group 3 when Bob
and Willie have the same SNR. PFA = 0.01.

Figure 7.29: The ROC plot of PD versus BER for the max cut detector with Group 1
when Bob and Willie have the same SNR. The SSCA was used to estimate the SCF, and
PFA = 0.01.
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Figure 7.30: The ROC plot of PD versus BER for the max cut detector with Group 2
when Bob and Willie have the same SNR. The SSCA was used to estimate the SCF, and
PFA = 0.01.

Figure 7.31: The ROC plot of PD versus BER for the max cut detector with Group 3
when Bob and Willie have the same SNR. The SSCA was used to estimate the SCF, and
PFA = 0.01.
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Figure 7.32: The ROC plot of PD versus BER for the DCS detector with Group 1 when Bob
and Willie have the same SNR. The SSCA was used to estimate the SCF, and PFA = 0.01.

Figure 7.33: The ROC plot of PD versus BER for the DCS detector with Group 2 when Bob
and Willie have the same SNR. The SSCA was used to estimate the SCF, and PFA = 0.01.
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Figure 7.34: The ROC plot of PD versus BER for the DCS detector with Group 3 when Bob
and Willie have the same SNR. The SSCA was used to estimate the SCF, and PFA = 0.01.

Figure 7.35: The ROC plot of PD versus BER for the normal-distribution detector with
Group 1 when Bob and Willie have the same SNR. PFA = 0.01.
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Figure 7.36: The ROC plot of PD versus BER for the normal-distribution detector with
Group 2 when Bob and Willie have the same SNR. PFA = 0.01.

Figure 7.37: The ROC plot of PD versus BER for the normal-distribution detector with
Group 3 when Bob and Willie have the same SNR. PFA = 0.01.
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7.3 Discussion
The results in Sections 7.1 and 7.2 demonstrate that not all detectors and transmission
schemes are created equal. While we can draw conclusions about which detectors Willie
ought to employ and which transmission schemes Alice and Bob should use, it is important
to keep in mind the scope and limitations of the model used in this work, and how the
implications of these results mesh with real-world transmission scenarios. The results of
this investigation of covert communications are summarized here, and the implications for
engineering practical systems are discussed.

7.3.1 Comparing Detector Performance
The radiometer, max cut, and DCS detectors each had good performance, and the normal-
distribution detector was significantly worse than the others. The radiometer had the most
consistent performance of any detector—the PD curves for all modulations are identical for
the radiometer, regardless of any details of the transmission scheme. The max cut and
DCS detectors had greater variance in their performance; they detected some modulations
at a lower SNR than the radiometer, but were able to reliably detect other modulations at
higher SNRs than the radiometer.

In this work Willie selects his detector threshold, λ0, using the CFAR approach, which
requires him to accurately know his noise variance, N0, If Willie is not magically pro-
vided with the value of N0, then he must estimate it himself to figure out which detector
threshold should be used. Any error in Willie’s estimate of the noise variance decreases
detector performance [128, 129], and may not affect each detector equally. It may be that
cyclostationarity detectors shine compared to the radiometer when this is taken into ac-
count. Choosing the best threshold based on a channel estimate is a difficult problem that
inevitably affects detector design.

Overall, this work confirms that both cyclostationarity detectors (max cut, DCS) and
energy detectors (the radiometer) are viable options for effectively detecting unknown trans-
missions in AWGN, while the normal-distribution detector should be avoided. The optimal
detector depends on the signal that is being detected, but Willie can expect stable detection
performance for every transmission scheme Alice might use when he deploys a radiometer.

7.3.2 Comparing Transmission Scheme Covertness
The transmission schemes in this work were assessed by using two primary properties:
deniability (covertness), and reliability (BER). A total of 21 transmission schemes were
tested, which varied wildly in terms of both these properties. The modulation technique
that consistently increased covertness was DSSS, which was represented in this simulation
by CDMA whose spreading sequences are Hadamard codes. This confirms DSSS as a sound
method for generating covert signals—at the cost of a reduced data rate.

It is important to consider both the detectability and the BER in the covertness problem.
If a modulation performs well by covertness metrics (i.e., it is hard for Willie to detect), but
has an unacceptably high BER, then the messages are not readable by the intended recipient.
FH-OFDM-DCSK is an example of this—Fig. 7.25 and Fig. 7.10 show that the normal-
distribution detector was unable to reliably detect FH-OFDM-DCSK, even at an SNR of
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+12dB. This was the best covertness performance of every combination of transmission
scheme and detector tested in this work. The BER of FH-OFDM-DCSK, however, was one
of the worst overall, which massively reduces its appeal.

The consequences of the tradeoff between the probability of detection, PD, and the BER
are perhaps best illustrated by the ROC plots shown in Section 7.2.2. To compare PD with
the BER, one must first fix the SNRs of Bob and Willie, and Figs. 7.26–7.37 plot the ROC
curve when Bob and Willie have the same SNR (which may be an unrealistic comparison). If
we disregard the normal-distribution detector (which had the worst detector performance),
then not a single modulation could be undetectable and have a BER less than 10−2 under
these conditions. A communications scheme is often considered useable when the BER is
less than 10−4. This paints a grim picture for Alice and Bob’s covertness prospects, and
highlights the importance of Alice and Bob ensuring that their channel has a better SNR
than Willie.

In this work, transmission schemes transmitted random bits that were completely un-
coded, including Gray coding. The use of error correction techniques could be employed
by Alice and Bob to reduce the error rate of their channel. A low BER is critical because
errors will force Alice to retransmit dropped packets. Having to re-transmit data increases
her total signal power and time spent using the channel, which consequently increases her
probability of being detected by Willie.

The modulation with the best BER/PD tradeoff overall was CDMA. CDMA-QPSK was
better than CDMA-BPSK because of the increased spectral efficiency of sending twice as
many bits per symbol. Using a longer spreading sequence increased covertness with the
DCS and normal-distribution detector, but decreased covertness with the max cut detector
(spreading sequence had no effect on the radiometer). Thus, the best performing variation of
CDMA was generally CDMA-QPSK with a 64 bit spreading sequence. However, the reduced
data rate means that Alice must transmit longer to achieve the same total throughput,
exposing her signal to Willie for a longer duration.

The only other techniques that have a mentionable performance while balancing covert-
ness with BER are PSK and OFDM. Using BPSK is better than QPSK, and using OFDM-
BPSK is better than OFDM-QPSK. Increasing the number of OFDM subcarriers reduced
covertness and increased detectability. The chaotic modulation had a lackluster perfor-
mance. I had expected that signals modulated with chaos generators would be more resis-
tant to cyclostationarity detectors, but the chaotic modulations were often more detectable
than other, more elementary, modulations.
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This work outlined the fundamental limits of covert communications in Chapter 2, and ex-
plored different extensions to the base problem. Several communications schemes of various
levels of proclaimed covertness were described in Chapter 3. The statistics of hypothesis
testing and the mathematical theory behind several different classes of detectors were de-
scribed in Chapter 4, while a review of existing metrics for quantifying covertness was
conducted in Chapter 5.

An explanation of simulation methods used to generate results and plots was given in
Chapter 6. The results of the simulation are shown in Chapter 7; the performance of detec-
tors in Section 7.1, and the performance of the transmission schemes in Section 7.2, with a
discussion of the overall results and implications of this experiment found in Section 7.3.

This section summarizes the results of previous sections and provides the key insights
about covert communications that were learned through this work. It also discusses open
questions and highlights promising avenues for further work.

8.1 Contributions of This Work
The approach in this thesis addresses a deficiency in the current literature by providing a
comprehensive performance assessment of multiple transmission schemes with the primary
classes of blind-parameter signal detectors. In addition, this work also considered the BER
versus PD tradeoff, which is usually omitted in other published work. Judging a transmission
scheme by its covertness properties alone does not provide a complete picture of its utility.
This tradeoff is important because if the deniability of a transmission comes at the cost of
reliability of Bob understanding the message then the modulation fails its primary role as
a communications scheme.

I investigated and answered two questions in this work:
• Q.1: What are the most covert wireless transmission schemes?
• Q.2: What are the most powerful signal detectors?

Answering Q.1 showed that Alice is best off using direct sequence spread spectrum (DSSS)
techniques to maximally profit from the tradeoff between bit error rate (BER) and the
probability of detection, PD. The transmission scheme with the best performance tested
in this work was CDMA-QPSK. The tradeoff between BER and PD is important, as Alice
wants to maximize the BER and minimize the probability of detection. Having a high BER
means that Alice will have to transmit for a longer duration because of retransmission of
dropped packets. This reduces the overall information capacity of the channel, as more of
the channel slots are used for packets with errors. This result validates the efficacy of DSSS
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techniques as a reliable method of increasing signal covertness, at the cost of a reduced data
rate.

Q.2 analyzes the problem of covert communications from the perspective of the illegiti-
mate observer. Warden Willie always achieves better results when he has more information
about the transmitted signal. The more characteristics of the transmitted signal that Willie
knows, the better of a matched filter he can construct to detect it.

With knowledge of only the signal bandwidth, W , and the AWGN noise variance, N0,
Willie can employ a radiometer or cyclostationarity detector to reliably detect Alice at
SNRs as low as −10dB. If Bob and Willie have the same SNR, then the BER for Bob is
likely to be unacceptably high—not a single modulation that was tested achieved a BER
less than 10−2 without also being detected with PD = 1 (for the TW product used here).
The results of this work make a strong case that it is much easier for Willie to achieve his
goals than it is for Alice and Bob, who need to, by any means, ensure that Willie has a
lower SNR than Bob. Otherwise, they are forced to drastically reduce the throughput of
their channel to avoid detection.

The best detectors are the radiometer and the cyclostationarity detectors. The normal-
distribution test detector had the worst performance, but was still effective for a variety of
modulation schemes. The radiometer the same performance for every transmission scheme,
as it only examines signal energy. The cyclostationarity detectors had a wider variance in
their ability to detect different modulations, although the DCS detector had less variance
than the max cut detector. Sometimes the cyclostationarity detectors performed better
than the radiometer, and sometimes they performed worse. This shows that Willie stands
to gain from employing multiple detectors simultaneously to increase his probability of
detection.

8.2 Recommendations for Further Work
This work established a framework for covert communications and compared the major
classes of conventional modulations and detectors. Further work could extend these ideas
to consider additional systems and approaches, and the key ones are identified here.

8.2.1 Additional Modulations
This work tested a wide variety of communications schemes, covering all the elementary
ones, as well as more exotic modulations designed with covertness in mind. There are
other communications schemes that exist, some of which combine characteristics of the
different core schemes. These modulations and their trade-offs in respect to complexity,
BER performance, and covertness could be investigated using the framework herein.

Additionally, many communications schemes have tuneable parameters (e.g., the spread-
ing sequence used for DSSS) that affect their performance. There are potentially infinite
options for modulation parameters, so examining tradeoffs between the various parameters
could be examined in further detail. Direct sequence spread spectrum (DSSS), also known
as CDMA for a single user, was found to be the best performing modulation in this work,
and Hadamard codes were used as the spreading sequence. Work needs to be done to deter-
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mine which spreading sequence (e.g., pseudo-random sequences, loosely-synchronous (LS)
codes [121]) is best, or if it matters.

Due to the open source nature of this work [36], anyone can easily extend the simulation
by adding additional transmission schemes.

8.2.2 Parallel Detector Bank
Section 7.1.1 shows that some detectors have better performance with certain modulations
than others. If Willie could employ multiple detectors running in parallel on the same
received signal, he could potentially increase his overall detection performance by combining
the outputs of all of them. The detector bank, however, incurs an increase in system
complexity, computational requirements, and cost.

The simplest way that Willie could connect all the detectors into a single detector would
be to use a binary moving window detector (BMWD) [110]. The output of each individual
detector is a binary “1” if the detector believes hypothesis H1 (there was a transmission),
and “0” if the detector believes hypothesis H0 (no transmission). The binary outputs of
each detector are fed into the BMWD, which records a detection event (H1) when one
or more of the input detectors has registered a detection event within the period of the
moving window. This setup could allow Willie to get the performance advantages of each
detector, while minimizing the drawbacks. Research shows that parallel detector banks
improve Willie’s detection power [137].

The suggestion above with the BMWD was a simple first step. More advanced ways of
integrating the information from the detectors in the bank could be used to improve Willie’s
detection capacity further, like Kalman filters, or machine learning techniques.

8.2.3 Frequency-Channelized Detectors
The parallel detector bank idea found above in Section 8.2.2 discusses a single bandwidth
being monitored by multiple detectors. Another idea is to divide the monitored bandwidth
into smaller frequency bins, where each subchannel is monitored by a detector.

The output of each detector for each frequency bin could then connect to a BMWD,
or via another technique, make a decision from the output of each individual detector.
Channelized detectors can be more effective against frequency-hopping spread spectrum
(FHSS) and CSS, as mentioned in Section 4.2.1). These could also help Willie to filter out
public users to further avoid false alarms.

Willie could also combine channelized detectors with a parallel bank of detectors oper-
ating on each subchannel. This mega detector bank could allow him to acquire the benefits
of both methods. The tradeoff here, again, is an increase in system complexity and compu-
tational requirements.

8.2.4 Partial and Burst Transmissions
As described in Section 6.1, this work assumes that in the H1 case, Alice is transmitting
for Willie’s entire integration period, and that in the H0 case, she is not transmitting at
all, so Willie receives only noise. In the real world it is likely that Willie’s observation
period does not always perfectly overlap Alice’s transmission window. He might catch only
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the beginning or the tail end of a transmission within his observation period. Alice could
also transmit information in short bursts that are potentially much smaller than Willie’s
observation period. She could send one or more of these packets within this observation
time, so further research should be done measuring the performance of detectors when the
transmission does not occupy the entire bandwidth.

This is important, because it is a necessary consideration not only to build practical
detectors, but also because it may reveal additional performance differences between detec-
tors. Since the radiometer is a total power detector, its performance suffers increasingly as
Alice’s transmissions occupy less and less of Willie’s observation period. The cyclostation-
arity detectors ought to fare better than the radiometer under these conditions, but further
research is required to establish the relative performance degradation of detectors that only
receive partial or burst transmissions.

8.2.5 Total Data Throughput
It has been seen that DSSS signals are the hardest to detect, and also suggested that error
correction coding would improve Bob’s BER performance. Both of these suggestions reduce
the data rate, which means Alice must transmit for longer to achieve the same total data
throughput. It would be useful to evaluate what the net effect is on the covertness of the
signal when this larger timescale is taken into account. This would permit an understanding
of how many “covert” bits the channel has with a given modulation scheme and detector.

8.3 Key Takeaways
The results of this work, in conjunction with the existing literature, provides several insights
for the designers of both covert communications schemes and signal detectors. Many of the
physical layer characteristics of the covert communications problem were abstracted away
in this work in order to produce more general results. The high-level considerations extend
beyond choosing a transmission scheme and detector type, and involve critical details for
building these systems practically.

8.3.1 SNR (at Willie) Matters
The best thing that Alice and Bob can do to achieve a positive covert capacity is to ensure
that Willie receives as little of Alice’s signal energy as possible. Alice and Bob can achieve
this by using a high gain antenna pointing at Bob while ensuring that Willie is not in the
line of sight. Alice and Bob can also employ beamforming, MIMO, and IRSs to achieve this
same end, as discussed in Section 2.4. Alternatively, Alice can lower her transmit power if
she knows that Bob is closer to her than Willie, as in the setup for detectability gain found
in Section 5.1.1.

Every detector fails when the SNR at Willie is sufficiently low, so it should be a high
priority for Alice and Bob to prevent Willie from seeing as much of the transmitted message
as possible. Likewise, if Willie knows the location of Alice, he can point an antenna at her
to increase his gain.
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8.3. Key Takeaways

8.3.2 Willie’s Estimate of Channel Conditions Matters
While the radiometer has been proven to be the mathematically the theoretically optimal
detector for an unknown deterministic signal under AWGN, the theory assumes that Willie
at all times has a perfect estimate of the noise variance, N0. As discussed in Section 5.1,
when Willie has to estimate the noise variance himself, this gravely decreases detector
performance [128, 129]. When Willie has a sufficiently bad estimate of N0, then positive
covert capacity is possible between Alice and Bob, as mentioned in Section 2.1.1.

This, of course, matters much less when the detector is a matched filter (Section 4.3) or
a cyclostationarity detector (Section 4.4), because these detector types analyze the received
signal structure beyond just the total energy, and thus perform better when the SNR is not
known exactly.

8.3.3 Bandwidth W and Integration Period T

For the radiometer, only the overall TW product matters for detection. This work assumes
that Alice’s transmission occupies the entire bandwidth W and lasts for the entire integra-
tion period T (or, that she does not transmit for the entire integration period T , in the H0

case). This is unrealistic, however, as there is no guarantee that Willie sees all of Alice’s
signal.

If the bandwidth, W , is too wide, or if the integration period, T , is longer than Alice’s
transmission, then Willie’s detectors are integrating more noise power that they need to.

The values of T and W matter a lot for the cyclostationarity detectors. Whereas the
radiometer cares merely for the TW product, there is far greater variation in detector
performance when T and W are altered individually for the cyclostationarity detectors, as
mentioned in Section 7.1.4.
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A Appendices

A.1 Big-O Notation
Bachman-Landau notation [143, Ch. 3], colloquially known as big-O notation, is used to
describe the asymptotic behaviour of functions.

To start, the notation f(n) = Θ(g(n)) means that f(n) grows exactly as fast as g(n).
This implies that there exist positive constants c1, c2 and n0 such that c1g(n) ≤ f(n) ≤

c2g(n), ∀n ≥ n0. In Bachman-Landau notation, Θ(·) is actually a set of functions, so
f(n) = Θ(n) actually means that f(n) ∈ Θ(n). The above definitions imply for some
positive constant k that:

f(n) ∈ Θ(g(n)) ⇐⇒ lim
n→∞

f(n)

g(n)
= k.

Most often used in the literature is the big-O(·). f(n) = O(g(n)) signifies that the
f(n) grows at most as fast as g(n) asymptotically. Formally, this means there exist positive
constants c and n0 such that 0 ≤ f(n) ≤ cg(n), ∀n ≥ n0.

The other similar terms used throughout are Ω(n) and o(n). f(n) = o(g(n)) implies that
∀c > 0, ∃n0 > 0 such that 0 ≤ f(n) < cg(n), ∀n ≥ n0. This means that f(n) strictly grows
slower than g(n). The term f(n) = Ω(g(n)) means that f(n) grows at least as fast as g(n).
Formally, there exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n), ∀n ≥ n0. For
completeness, f(n) = ω(g(n)) implies f(n) grows strictly faster than g(n). So ∀c > 0, there
is an n0 > 0 such that 0 ≤ cg(n) < f(n).

Here is a rough chart of what the notations mean for asymptotic values of f and g:

f = O(g(n)) ≈ f ≤ g

= Ω(g(n)) ≈ f ≥ g

= Θ(g(n)) ≈ f = g

= o(g(n)) ≈ f < g

= ω(g(n)) ≈ f > g.
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A.2. Bit Error Rates of Modulations

A.2 Bit Error Rates of Modulations
The bit error rate (BER) of each modulation was calculated by counting the number of
bit errors at the receiver at different SNRs under additive white Gaussian noise (AWGN).
Throughout this work, the BER is shown in terms of the ratio of the total signal power to
noise power:

SNR =
Total Signal Power
Total Noise Power .

All the BERs, as a function of SNR, can be seen in Figs. A.1–A.3.
It is more conventional in the literature to measure BER as a function of the bit energy,

Eb
N0

. This is ratio of the energy per bit, Eb, to the noise variance, and measures the spectral
efficiency of the modulation. Figs. A.4–A.6 shows a plot of BER as a function of the
bit-energy, Eb

N0
.

Figure A.1: The BER of Group 1 modulations as a function of the ratio of signal power to
noise power (SNR).
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A.2. Bit Error Rates of Modulations

Figure A.2: The BER of Group 2 modulations as a function of the ratio of signal power to
noise power (SNR).

Figure A.3: The BER of Group 3 modulations as a function of the ratio of signal power to
noise power (SNR).
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A.2. Bit Error Rates of Modulations

Figure A.4: The BERs of Group 1 modulations as a function of the ratio bit-energy to noise
variance, Eb

N0
.

Figure A.5: The BERs of Group 2 modulations as a function of the ratio bit-energy to noise
variance, Eb

N0
.

78



A.2. Bit Error Rates of Modulations

Figure A.6: The BERs of Group 3 modulations as a function of the ratio bit-energy to noise
variance, Eb

N0
.
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